BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25688029)

  • 1. Transversely isotropic material characterization of the human anterior longitudinal ligament.
    Hortin M; Graham S; Boatwright K; Hyoung P; Bowden A
    J Mech Behav Biomed Mater; 2015 May; 45():75-82. PubMed ID: 25688029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect.
    Robertson D; Willardson R; Parajuli D; Cannon A; Bowden AE
    J Mech Behav Biomed Mater; 2013 Jan; 17():34-43. PubMed ID: 23131792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain.
    Robertson DJ; Von Forell GA; Alsup J; Bowden AE
    J Mech Behav Biomed Mater; 2013 Jul; 23():44-52. PubMed ID: 23660304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.
    Hortin MS; Bowden AE
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1505-18. PubMed ID: 27007776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density.
    Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL
    J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive determination of ligament strain with deformable image registration.
    Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA
    Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation and validation of probabilistic models of the anterior longitudinal ligament and posterior longitudinal ligament of the cervical spine.
    Francis WL; Eliason TD; Thacker BH; Paskoff GR; Shender BS; Nicolella DP
    Comput Methods Biomech Biomed Engin; 2014; 17(8):905-16. PubMed ID: 23113530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on the constitutive relation of ligament tissues with the effects of collagen types.
    Wan C; Hao Z; Tong L; Lin J; Li Z; Wen S
    J Mech Behav Biomed Mater; 2015 Oct; 50():255-67. PubMed ID: 26164216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
    Kim H; Lim DH; Oh HJ; Lee KY; Lee SJ
    Biomed Mater; 2011 Oct; 6(5):055005. PubMed ID: 21849724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.
    Ayturk UM; Puttlitz CM
    Comput Methods Biomech Biomed Engin; 2011 Aug; 14(8):695-705. PubMed ID: 21229413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure properties of cervical spinal ligaments under fast strain rate deformations.
    Bass CR; Lucas SR; Salzar RS; Oyen ML; Planchak C; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jan; 32(1):E7-13. PubMed ID: 17202883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic Material Characterization of Human Cervix Tissue Based on Indentation and Inverse Finite Element Analysis.
    Shi L; Yao W; Gan Y; Zhao LY; Eugene McKee W; Vink J; Wapner RJ; Hendon CP; Myers K
    J Biomech Eng; 2019 Sep; 141(9):0910171-09101713. PubMed ID: 31374123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra.
    Unnikrishnan GU; Barest GD; Berry DB; Hussein AI; Morgan EF
    J Biomech Eng; 2013 Oct; 135(10):101007-11. PubMed ID: 23942609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.