These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25688181)

  • 1. Deciphering solution scattering data with experimentally guided molecular dynamics simulations.
    Björling A; Niebling S; Marcellini M; van der Spoel D; Westenhoff S
    J Chem Theory Comput; 2015 Feb; 11(2):780-7. PubMed ID: 25688181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting time series matching a small-angle X-ray scattering profile from trajectories of molecular dynamics simulations.
    Shimizu M; Okuda A; Morishima K; Inoue R; Sato N; Yunoki Y; Urade R; Sugiyama M
    Sci Rep; 2022 Jun; 12(1):9970. PubMed ID: 35705644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution.
    Larsen AH; Wang Y; Bottaro S; Grudinin S; Arleth L; Lindorff-Larsen K
    PLoS Comput Biol; 2020 Apr; 16(4):e1007870. PubMed ID: 32339173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bringing diffuse X-ray scattering into focus.
    Wall ME; Wolff AM; Fraser JS
    Curr Opin Struct Biol; 2018 Jun; 50():109-116. PubMed ID: 29455056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid interpretation of small-angle X-ray scattering data.
    Weiel M; Reinartz I; Schug A
    PLoS Comput Biol; 2019 Mar; 15(3):e1006900. PubMed ID: 30901335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structural dynamics revealed by time-resolved X-ray solution scattering.
    Kim JG; Kim TW; Kim J; Ihee H
    Acc Chem Res; 2015 Aug; 48(8):2200-8. PubMed ID: 26134248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes.
    Yang S; Park S; Makowski L; Roux B
    Biophys J; 2009 Jun; 96(11):4449-63. PubMed ID: 19486669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering.
    Kim KH; Muniyappan S; Oang KY; Kim JG; Nozawa S; Sato T; Koshihara SY; Henning R; Kosheleva I; Ki H; Kim Y; Kim TW; Kim J; Adachi S; Ihee H
    J Am Chem Soc; 2012 Apr; 134(16):7001-8. PubMed ID: 22494177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution.
    Putnam CD; Hammel M; Hura GL; Tainer JA
    Q Rev Biophys; 2007 Aug; 40(3):191-285. PubMed ID: 18078545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Coarse-Grained Protein Force Fields with Small-Angle X-ray Scattering Data.
    Latham AP; Zhang B
    J Phys Chem B; 2019 Feb; 123(5):1026-1034. PubMed ID: 30620594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting solution X-ray scattering data using molecular simulations.
    Hub JS
    Curr Opin Struct Biol; 2018 Apr; 49():18-26. PubMed ID: 29172147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAXS-Guided Metadynamics.
    Kimanius D; Pettersson I; Schluckebier G; Lindahl E; Andersson M
    J Chem Theory Comput; 2015 Jul; 11(7):3491-8. PubMed ID: 26575782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering.
    Kim TW; Lee SJ; Jo J; Kim JG; Ki H; Kim CW; Cho KH; Choi J; Lee JH; Wulff M; Rhee YM; Ihee H
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14996-15005. PubMed ID: 32541047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexisting origins of subdiffusion in internal dynamics of proteins.
    Meroz Y; Ovchinnikov V; Karplus M
    Phys Rev E; 2017 Jun; 95(6-1):062403. PubMed ID: 28709262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting protein structural dynamics from NMR chemical shifts.
    Robustelli P; Stafford KA; Palmer AG
    J Am Chem Soc; 2012 Apr; 134(14):6365-74. PubMed ID: 22381384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution wide-angle X-ray scattering of protein solutions: effect of beam dose on protein integrity.
    Fischetti RF; Rodi DJ; Mirza A; Irving TC; Kondrashkina E; Makowski L
    J Synchrotron Radiat; 2003 Sep; 10(Pt 5):398-404. PubMed ID: 12944630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein conformations explored by difference high-angle solution X-ray scattering: oxidation state and temperature dependent changes in cytochrome C.
    Tiede DM; Zhang R; Seifert S
    Biochemistry; 2002 May; 41(21):6605-14. PubMed ID: 12022864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations and X-ray scattering show the κ-carrageenan disorder-to-order transition to be the formation of double-helices.
    Westberry BP; Mansel BW; Lundin L; Williams MAK
    Carbohydr Polym; 2023 Feb; 302():120417. PubMed ID: 36604079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.