These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25688338)

  • 61. Spectral estimation optical coherence tomography for axial super-resolution.
    Liu X; Chen S; Cui D; Yu X; Liu L
    Opt Express; 2015 Oct; 23(20):26521-32. PubMed ID: 26480165
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography.
    Cense B; Nassif N; Chen T; Pierce M; Yun SH; Park B; Bouma B; Tearney G; de Boer J
    Opt Express; 2004 May; 12(11):2435-47. PubMed ID: 19475080
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography.
    Povazay B; Hofer B; Torti C; Hermann B; Tumlinson AR; Esmaeelpour M; Egan CA; Bird AC; Drexler W
    Opt Express; 2009 Mar; 17(5):4134-50. PubMed ID: 19259251
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Full-field time-encoded frequency-domain optical coherence tomography.
    Povazay B; Unterhuber A; Hermann B; Sattmann H; Arthaber H; Drexler W
    Opt Express; 2006 Aug; 14(17):7661-9. PubMed ID: 19529134
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography.
    Huber R; Wojtkowski M; Fujimoto JG
    Opt Express; 2006 Apr; 14(8):3225-37. PubMed ID: 19516464
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography.
    Nuyen B; Mansouri K; N Weinreb R
    J Curr Glaucoma Pract; 2012; 6(3):113-9. PubMed ID: 26997766
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
    Meemon P; Lenaphet Y; Widjaja J
    Appl Opt; 2021 Mar; 60(7):2069-2076. PubMed ID: 33690300
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line.
    Hyeon MG; Kim HJ; Kim BM; Eom TJ
    Opt Express; 2015 Sep; 23(18):23079-91. PubMed ID: 26368412
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging.
    Yuan W; Mavadia-Shukla J; Xi J; Liang W; Yu X; Yu S; Li X
    Opt Lett; 2016 Jan; 41(2):250-3. PubMed ID: 26766686
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma.
    Angmo D; Nongpiur ME; Sharma R; Sidhu T; Sihota R; Dada T
    Oman J Ophthalmol; 2016; 9(1):3-10. PubMed ID: 27013821
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Time-encoded mid-infrared Fourier-domain optical coherence tomography.
    Zorin I; Gattinger P; Prylepa A; Heise B
    Opt Lett; 2021 Sep; 46(17):4108-4111. PubMed ID: 34469951
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spectral domain optical coherence tomography: a better OCT imaging strategy.
    Yaqoob Z; Wu J; Yang C
    Biotechniques; 2005 Dec; 39(6 Suppl):S6-13. PubMed ID: 20158503
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of spectral domain and swept source optical coherence tomography for angle assessment of Chinese elderly subjects.
    Qiao Y; Tan C; Zhang M; Sun X; Chen J
    BMC Ophthalmol; 2019 Jul; 19(1):142. PubMed ID: 31286869
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm.
    Park B; Pierce MC; Cense B; Yun SH; Mujat M; Tearney G; Bouma B; de Boer J
    Opt Express; 2005 May; 13(11):3931-44. PubMed ID: 19495302
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dual-Channel Spectral Domain Optical Coherence Tomography Based on a Single Spectrometer Using Compressive Sensing.
    Yi L; Sun L; Zou M; Hou B
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527515
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adaptive optics optical coherence tomography at 1 MHz.
    Kocaoglu OP; Turner TL; Liu Z; Miller DT
    Biomed Opt Express; 2014 Dec; 5(12):4186-200. PubMed ID: 25574431
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin.
    Hirayama H; Nakamura S
    J Biomed Opt; 2015 Jul; 20(7):076014. PubMed ID: 26222961
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography.
    Waldstein SM; Faatz H; Szimacsek M; Glodan AM; Podkowinski D; Montuoro A; Simader C; Gerendas BS; Schmidt-Erfurth U
    Eye (Lond); 2015 Mar; 29(3):409-15. PubMed ID: 25592119
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.