These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25688384)

  • 1. Micropatterned, clickable culture substrates enable in situ spatiotemporal control of human PSC-derived neural tissue morphology.
    Knight GT; Sha J; Ashton RS
    Chem Commun (Camb); 2015 Mar; 51(25):5238-41. PubMed ID: 25688384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment.
    Wang M; Deng Y; Zhou P; Luo Z; Li Q; Xie B; Zhang X; Chen T; Pei D; Tang Z; Wei S
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4560-72. PubMed ID: 25671246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate.
    Kawase E
    Methods Mol Biol; 2016; 1307():61-9. PubMed ID: 24875248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xeno-free adaptation and culture of human pluripotent stem cells.
    Sampsell-Barron T
    Methods Mol Biol; 2013; 1001():81-97. PubMed ID: 23494422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment.
    Miranda CC; Fernandes TG; Pascoal JF; Haupt S; Brüstle O; Cabral JM; Diogo MM
    Biotechnol J; 2015 Oct; 10(10):1612-24. PubMed ID: 25866360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates.
    Abraham S; Sheridan SD; Miller B; Rao RR
    Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonviral gene delivery in neural progenitors derived from human pluripotent stem cells.
    Dhara SK; Majumder A; Dodla MC; Stice SL
    Methods Mol Biol; 2011; 767():343-54. PubMed ID: 21822887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors.
    Lippmann ES; Estevez-Silva MC; Ashton RS
    Stem Cells; 2014 Apr; 32(4):1032-42. PubMed ID: 24357014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.
    van den Berg CW; Elliott DA; Braam SR; Mummery CL; Davis RP
    Methods Mol Biol; 2016; 1353():163-80. PubMed ID: 25626427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suspended in culture--human pluripotent cells for scalable technologies.
    O'Brien C; Laslett AL
    Stem Cell Res; 2012 Sep; 9(2):167-70. PubMed ID: 22771716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The suspension culture of undifferentiated human pluripotent stem cells using spinner flasks.
    Chen VC; Couture LA
    Methods Mol Biol; 2015; 1283():13-21. PubMed ID: 25537838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous membrane culture method for expansion of human pluripotent stem cells.
    Kim JS; Hwang ST; Lee SH
    Methods Mol Biol; 2015; 1212():65-72. PubMed ID: 25556655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity.
    Higuchi A; Kao SH; Ling QD; Chen YM; Li HF; Alarfaj AA; Munusamy MA; Murugan K; Chang SC; Lee HC; Hsu ST; Kumar SS; Umezawa A
    Sci Rep; 2015 Dec; 5():18136. PubMed ID: 26656754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Derivation of Multipotent Neural Crest Cells Derived from Human Pluripotent Stem Cells.
    Avery J; Dalton S
    Methods Mol Biol; 2016; 1341():197-208. PubMed ID: 25986498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrates for human pluripotent stem cell cultures in conditioned medium of mesenchymal stem cells.
    Ueda Y; Fujita S; Nishigaki T; Arima Y; Iwata H
    J Biomater Sci Polym Ed; 2012; 23(1-4):153-65. PubMed ID: 22133351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New medium used in the differentiation of human pluripotent stem cells to retinal cells is comparable to fetal human eye tissue.
    Wang X; Xiong K; Lin C; Lv L; Chen J; Xu C; Wang S; Gu D; Zheng H; Yu H; Li Y; Xiao H; Zhou G
    Biomaterials; 2015 Jun; 53():40-9. PubMed ID: 25890705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of putative hematopoietic stem cells derived from human pluripotent stem cells.
    Hexum MK; Tian X; Kaufman DS
    Methods Mol Biol; 2011; 767():433-47. PubMed ID: 21822894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xeno-free culture of human pluripotent stem cells.
    Bergström R; Ström S; Holm F; Feki A; Hovatta O
    Methods Mol Biol; 2011; 767():125-36. PubMed ID: 21822871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.
    Tsai Y; Cutts J; Kimura A; Varun D; Brafman DA
    Stem Cell Res; 2015 Jul; 15(1):75-87. PubMed ID: 26002631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency.
    Alamein MA; Wolvetang EJ; Ovchinnikov DA; Stephens S; Sanders K; Warnke PH
    J Tissue Eng Regen Med; 2015 Sep; 9(9):1078-83. PubMed ID: 25423911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.