BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 25688451)

  • 1. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique.
    Kong JH; Kim TH; Kim JH; Park JK; Lee DW; Kim SH; Kim JM
    Nanoscale; 2014; 6(3):1453-61. PubMed ID: 24316731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple route to morphology-controlled polydimethylsiloxane films based on particle-embedded elastomeric masters for enhanced superhydrophobicity.
    Jeong DW; Kim SJ; Park JK; Kim SH; Lee DW; Kim JM
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2770-6. PubMed ID: 24456274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.
    Goswami D; Medda SK; De G
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of superhydrophobic films with robust adhesion and dual pinning state via in situ polymerization.
    Raza A; Si Y; Ding B; Yu J; Sun G
    J Colloid Interface Sci; 2013 Apr; 395():256-62. PubMed ID: 23245890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2-Cu2O thin films.
    Aytug T; Bogorin DF; Paranthaman PM; Mathis JE; Simpson JT; Christen DK
    Nanotechnology; 2014 Jun; 25(24):245601. PubMed ID: 24857856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.
    Peng S; Tian D; Miao X; Yang X; Deng W
    J Colloid Interface Sci; 2013 Nov; 409():18-24. PubMed ID: 23981676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.
    Aytug T; Simpson JT; Lupini AR; Trejo RM; Jellison GE; Ivanov IN; Pennycook SJ; Hillesheim DA; Winter KO; Christen DK; Hunter SR; Haynes JA
    Nanotechnology; 2013 Aug; 24(31):315602. PubMed ID: 23857991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid surface design for robust superhydrophobicity.
    Dash S; Alt MT; Garimella SV
    Langmuir; 2012 Jun; 28(25):9606-15. PubMed ID: 22630787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-Free Fabrication of Flexible and Robust Superhydrophobic Composite Films with Hierarchical Micro/Nanostructures and Durable Self-Cleaning Functionality.
    Liu S; Zhang X; Seeger S
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44691-44699. PubMed ID: 31630521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes.
    Tombesi A; Li S; Sathasivam S; Page K; Heale FL; Pettinari C; Carmalt CJ; Parkin IP
    Sci Rep; 2019 May; 9(1):7549. PubMed ID: 31101832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.
    Xu L; Karunakaran RG; Guo J; Yang S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1118-25. PubMed ID: 22292419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.
    Wang D; Zhang Z; Li Y; Xu C
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10014-21. PubMed ID: 24955659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles.
    Lee WK; Jung WB; Nagel SR; Odom TW
    Nano Lett; 2016 Jun; 16(6):3774-9. PubMed ID: 27144774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.