These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 25688451)

  • 41. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superhydrophobic surfaces from hierarchically structured wrinkled polymers.
    Li Y; Dai S; John J; Carter KR
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.
    Miyagawa H; Yamauchi K; Kim YK; Ogawa K; Yamaguchi K; Suzaki Y
    Langmuir; 2012 Dec; 28(51):17761-5. PubMed ID: 23186100
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile fabrication of transparent superhydrophobic surfaces by spray deposition.
    Hwang HS; Kim NH; Lee SG; Lee DY; Cho K; Park I
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2179-83. PubMed ID: 21728363
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability.
    Fan P; Pan R; Zhong M
    Langmuir; 2019 Dec; 35(51):16693-16711. PubMed ID: 31782653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stable and transparent superhydrophobic nanoparticle films.
    Ling XY; Phang IY; Vancso GJ; Huskens J; Reinhoudt DN
    Langmuir; 2009 Mar; 25(5):3260-3. PubMed ID: 19437727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water droplet bouncing and superhydrophobicity induced by multiscale hierarchical nanostructures.
    Lee DJ; Kim HM; Song YS; Youn JR
    ACS Nano; 2012 Sep; 6(9):7656-64. PubMed ID: 22928700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superhydrophobic hierarchical honeycomb surfaces.
    Brown PS; Talbot EL; Wood TJ; Bain CD; Badyal JP
    Langmuir; 2012 Sep; 28(38):13712-9. PubMed ID: 22966860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.
    Ryu J; Kim K; Park J; Hwang BG; Ko Y; Kim H; Han J; Seo E; Park Y; Lee SJ
    Sci Rep; 2017 May; 7(1):1981. PubMed ID: 28512304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superhydrophobic stability of nanotube array surfaces under impact and static forces.
    Zhu L; Shi P; Xue J; Wang Y; Chen Q; Ding J; Wang Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8073-9. PubMed ID: 24873475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Micro-nano hierarchical pillar array structures prepared on curved surfaces by nanoimprinting using flexible molds from anodic porous alumina and their application to superhydrophobic surfaces.
    Yanagishita T; Sou T; Masuda H
    RSC Adv; 2022 Jul; 12(31):20340-20347. PubMed ID: 35919591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of Robust, Anti-reflective, Transparent Superhydrophobic Coatings with a Micropatterned Multilayer Structure.
    Luo W; Xu J; Li G; Niu G; Ng KW; Wang F; Li M
    Langmuir; 2022 Jun; 38(23):7129-7136. PubMed ID: 35658446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol-Ene Functionalization.
    Guo J; Fang W; Welle A; Feng W; Filpponen I; Rojas OJ; Levkin PA
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34115-34122. PubMed ID: 27960438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.
    Tan JM; Ruan JJ; Lee HK; Phang IY; Ling XY
    Phys Chem Chem Phys; 2014 Dec; 16(48):26983-90. PubMed ID: 25380327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Morphology-driven nonwettability of nanostructured BN surfaces.
    Pakdel A; Bando Y; Golberg D
    Langmuir; 2013 Jun; 29(24):7529-33. PubMed ID: 23560820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-tier rough superhydrophobic surfaces.
    Cao Y; Yuan L; Hu B; Zhou J
    Nanotechnology; 2015 Aug; 26(31):315705. PubMed ID: 26184512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.