These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 25688522)
21. A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system. Brown KH; Bach EM; Drijber RA; Hofmockel KS; Jeske ES; Sawyer JE; Castellano MJ Glob Chang Biol; 2014 Apr; 20(4):1339-50. PubMed ID: 24395533 [TBL] [Abstract][Full Text] [Related]
22. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities. La Scala N; De Figueiredo EB; Panosso AR Braz J Biol; 2012 Aug; 72(3 Suppl):775-85. PubMed ID: 23011303 [TBL] [Abstract][Full Text] [Related]
23. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land. Fortier J; Truax B; Gagnon D; Lambert F J Environ Manage; 2015 May; 154():333-45. PubMed ID: 25753395 [TBL] [Abstract][Full Text] [Related]
24. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498 [TBL] [Abstract][Full Text] [Related]
25. What is soil organic matter worth? Sparling GP; Wheeler D; Vesely ET; Schipper LA J Environ Qual; 2006; 35(2):548-57. PubMed ID: 16510699 [TBL] [Abstract][Full Text] [Related]
26. Effects of land management change on spatial variability of organic matter and nutrients in paddy field: a case study of Pinghu, China. Liu X; Xu J; Zhang M; Zhou B Environ Manage; 2004 Nov; 34(5):691-700. PubMed ID: 15633025 [TBL] [Abstract][Full Text] [Related]
27. Soil, water, and nutrient losses from management alternatives for degraded pasture in Brazilian Atlantic Rainforest biome. Rocha Junior PRD; Andrade FV; Mendonça ES; Donagemma GK; Fernandes RBA; Bhattharai R; Kalita PK Sci Total Environ; 2017 Apr; 583():53-63. PubMed ID: 28104335 [TBL] [Abstract][Full Text] [Related]
28. Impact of the conversion of Brazilian woodland savanna (cerradão) to pasture and Eucalyptus plantations on soil nitrogen mineralization. López-Poma R; Pivello VR; de Brito GS; Bautista S Sci Total Environ; 2020 Feb; 704():135397. PubMed ID: 31810678 [TBL] [Abstract][Full Text] [Related]
29. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. Bento CB; Filoso S; Pitombo LM; Cantarella H; Rossetto R; Martinelli LA; do Carmo JB J Environ Manage; 2018 Jan; 206():980-988. PubMed ID: 29223108 [TBL] [Abstract][Full Text] [Related]
30. Soil profile distribution of phosphorus and other nutrients following wetland conversion to beef cattle pasture. Sigua GC; Kang WJ; Coleman SW J Environ Qual; 2006; 35(6):2374-82. PubMed ID: 17071908 [TBL] [Abstract][Full Text] [Related]
31. Estimating 20-year land-use change and derived CO Novaes RML; Pazianotto RAA; Brandão M; Alves BJR; May A; Folegatti-Matsuura MIS Glob Chang Biol; 2017 Sep; 23(9):3716-3728. PubMed ID: 28370797 [TBL] [Abstract][Full Text] [Related]
32. Where is sugarcane cropping expanding in the brazilian cerrado, and why? A case study. Arruda MR; Giller KE; Slingerland M An Acad Bras Cienc; 2017; 89(3 Suppl):2485-2493. PubMed ID: 28813093 [TBL] [Abstract][Full Text] [Related]
33. Deep Soil C, N, and P Stocks and Stoichiometry in Response to Land Use Patterns in the Loess Hilly Region of China. Li C; Zhao L; Sun P; Zhao F; Kang D; Yang G; Han X; Feng Y; Ren G PLoS One; 2016; 11(7):e0159075. PubMed ID: 27415785 [TBL] [Abstract][Full Text] [Related]
34. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio. Shrestha RK; Lal R J Environ Qual; 2007; 36(6):1775-83. PubMed ID: 17965380 [TBL] [Abstract][Full Text] [Related]
36. Linking above and belowground carbon sequestration, soil organic matter properties, and soil health in Brazilian Atlantic Forest restoration. Bieluczyk W; Asselta FO; Navroski D; Gontijo JB; Venturini AM; Mendes LW; Simon CP; Camargo PB; Tadini AM; Martin-Neto L; Bendassolli JA; Rodrigues RR; van der Putten WH; Tsai SM J Environ Manage; 2023 Oct; 344():118573. PubMed ID: 37459811 [TBL] [Abstract][Full Text] [Related]
37. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization. Lagomarsino A; Moscatelli MC; De Angelis P; Grego S Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027 [TBL] [Abstract][Full Text] [Related]
38. Mid-infrared spectroscopy for rapid assessment of soil properties after land use change from pastures to Eucalyptus globulus plantations. Madhavan DB; Kitching M; Mendham DS; Weston CJ; Baker TG J Environ Manage; 2016 Jun; 175():67-75. PubMed ID: 27043775 [TBL] [Abstract][Full Text] [Related]
39. Impact of long-term N fertilisation on CO Shahbaz M; Menichetti L; Kätterer T; Börjesson G Sci Total Environ; 2019 Mar; 658():1539-1548. PubMed ID: 30678012 [TBL] [Abstract][Full Text] [Related]
40. Thermal stability of soil organic matter pools and their turnover times calculated by delta(13)C under elevated CO(2) and two levels of N fertilisation. Dorodnikov M; Fangmeier A; Giesemann A; Weigel HJ; Stahr K; Kuzyakov Y Isotopes Environ Health Stud; 2008 Dec; 44(4):365-76. PubMed ID: 19061067 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]