These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 25688569)
1. One-photon and two-photon sensing of biothiols using a bis-pyrene-Cu(II) ensemble and its application to image GSH in the cells and tissues. Hu Y; Heo CH; Kim G; Jun EJ; Yin J; Kim HM; Yoon J Anal Chem; 2015 Mar; 87(6):3308-13. PubMed ID: 25688569 [TBL] [Abstract][Full Text] [Related]
2. 1,8-Naphthalimide-Cu(ІІ) ensemble based turn-on fluorescent probe for the detection of thiols in organic aqueous media. Shi YG; Yao JH; Duan YL; Mi QL; Chen JH; Xu QQ; Gou GZ; Zhou Y; Zhang JF Bioorg Med Chem Lett; 2013 May; 23(9):2538-42. PubMed ID: 23545110 [TBL] [Abstract][Full Text] [Related]
3. Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum. Zhang Q; Deng T; Li J; Xu W; Shen G; Yu R Biosens Bioelectron; 2015 Jun; 68():253-258. PubMed ID: 25590970 [TBL] [Abstract][Full Text] [Related]
4. Discriminative fluorescence sensing of biothiols in vitro and in living cells. Miao Q; Li Q; Yuan Q; Li L; Hai Z; Liu S; Liang G Anal Chem; 2015 Mar; 87(6):3460-6. PubMed ID: 25688007 [TBL] [Abstract][Full Text] [Related]
5. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation. Liu SR; Chang CY; Wu SP Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219 [TBL] [Abstract][Full Text] [Related]
6. A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Huang Y; Zhou J; Feng H; Zheng J; Ma HM; Liu W; Tang C; Ao H; Zhao M; Qian Z Biosens Bioelectron; 2016 Dec; 86():748-755. PubMed ID: 27476056 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and Application of an Aldazine-Based Fluorescence Chemosensor for the Sequential Detection of Cu²⁺ and Biological Thiols in Aqueous Solution and Living Cells. Jia H; Yang M; Meng Q; He G; Wang Y; Hu Z; Zhang R; Zhang Z Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26761012 [TBL] [Abstract][Full Text] [Related]
8. A long-lived Donor-Acceptor fluorescent probe for sequential detection of Cu Chao D; Pan Y; Gao XW Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117770. PubMed ID: 31708463 [TBL] [Abstract][Full Text] [Related]
9. An iminocoumarin-Cu(II) ensemble-based chemodosimeter toward thiols. Jung HS; Han JH; Habata Y; Kang C; Kim JS Chem Commun (Camb); 2011 May; 47(18):5142-4. PubMed ID: 21409269 [TBL] [Abstract][Full Text] [Related]
10. A fluorescein-based chemosensor for relay fluorescence recognition of Cu(ii) ions and biothiols in water and its applications to a molecular logic gate and living cell imaging. Fu ZH; Yan LB; Zhang X; Zhu FF; Han XL; Fang J; Wang YW; Peng Y Org Biomol Chem; 2017 May; 15(19):4115-4121. PubMed ID: 28379264 [TBL] [Abstract][Full Text] [Related]
11. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione. Zhang D; Yang Z; Li H; Pei Z; Sun S; Xu Y Chem Commun (Camb); 2016 Jan; 52(4):749-52. PubMed ID: 26565523 [TBL] [Abstract][Full Text] [Related]
12. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel. Guo X; Zhang X; Wang S; Li S; Hu R; Li Y; Yang G Anal Chim Acta; 2015 Apr; 869():81-8. PubMed ID: 25818143 [TBL] [Abstract][Full Text] [Related]
13. Design strategies of fluorescent probes for selective detection among biothiols. Niu LY; Chen YZ; Zheng HR; Wu LZ; Tung CH; Yang QZ Chem Soc Rev; 2015 Oct; 44(17):6143-60. PubMed ID: 26027649 [TBL] [Abstract][Full Text] [Related]
14. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo. Chen W; Luo H; Liu X; Foley JW; Song X Anal Chem; 2016 Apr; 88(7):3638-46. PubMed ID: 26911923 [TBL] [Abstract][Full Text] [Related]
15. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells. Wang J; Zhou C; Zhang J; Zhu X; Liu X; Wang Q; Zhang H Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():31-37. PubMed ID: 27203232 [TBL] [Abstract][Full Text] [Related]
16. Cascade reaction-based trinal-site probe for sensing and imaging of cysteine and glutathione. Chen S; Luo Y; Wang N; Chen X; Guo Y; Deng H; Xu J; Chen SW; Wang J Talanta; 2020 Feb; 208():119934. PubMed ID: 31816805 [TBL] [Abstract][Full Text] [Related]
17. A red-emitting Europium(III) complex as a luminescent probe with large Stokes shift for the sequential determination of Cu Zhang J; Zhou X; Wang J; Fang D Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121663. PubMed ID: 35917616 [TBL] [Abstract][Full Text] [Related]
18. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. Kwon H; Lee K; Kim HJ Chem Commun (Camb); 2011 Feb; 47(6):1773-5. PubMed ID: 21127785 [TBL] [Abstract][Full Text] [Related]
19. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine. He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515 [TBL] [Abstract][Full Text] [Related]
20. A fluorescent probe for simultaneous discrimination of GSH and Cys/Hcy in human serum samples via distinctly-separated emissions with independent excitations. Hu Q; Yu C; Xia X; Zeng F; Wu S Biosens Bioelectron; 2016 Jul; 81():341-348. PubMed ID: 26991600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]