BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25688674)

  • 1. High-throughput screening approaches to identify regulators of mammalian autophagy.
    Joachim J; Jiang M; McKnight NC; Howell M; Tooze SA
    Methods; 2015 Mar; 75():96-104. PubMed ID: 25688674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Autophagic Flux Probe that Releases an Internal Control.
    Kaizuka T; Morishita H; Hama Y; Tsukamoto S; Matsui T; Toyota Y; Kodama A; Ishihara T; Mizushima T; Mizushima N
    Mol Cell; 2016 Nov; 64(4):835-849. PubMed ID: 27818143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Validation of Novel Autophagy Regulators Using an Endogenous Readout siGENOME Screen.
    New M; Van Acker T; Jiang M; Saunders R; Long JS; Sakamaki JI; Ryan KM; Howell M; Tooze SA
    Methods Mol Biol; 2019; 1880():359-374. PubMed ID: 30610710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene.
    He P; Peng Z; Luo Y; Wang L; Yu P; Deng W; An Y; Shi T; Ma D
    Autophagy; 2009 Jan; 5(1):52-60. PubMed ID: 19029833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of RNAi and Small Molecule Screens to Identify Targets for Drug Development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2019; 1953():33-42. PubMed ID: 30912014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC.
    McKnight NC; Jefferies HB; Alemu EA; Saunders RE; Howell M; Johansen T; Tooze SA
    EMBO J; 2012 Apr; 31(8):1931-46. PubMed ID: 22354037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells.
    Ropolo A; Grasso D; Pardo R; Sacchetti ML; Archange C; Lo Re A; Seux M; Nowak J; Gonzalez CD; Iovanna JL; Vaccaro MI
    J Biol Chem; 2007 Dec; 282(51):37124-33. PubMed ID: 17940279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of pan autophagy inhibitors through a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across 3 eukaryotic kingdoms.
    Mishra P; Dauphinee AN; Ward C; Sarkar S; Gunawardena AHLAN; Manjithaya R
    Autophagy; 2017 Sep; 13(9):1556-1572. PubMed ID: 28792845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a High-Throughput, Compound-Multiplexed Fluorescence Polarization Assay to Identify ATG5-ATG16L1 Protein-Protein Interaction Inhibitors.
    Salkovski M; Pavlinov I; Gao Q; Aldrich LN
    SLAS Discov; 2021 Aug; 26(7):933-943. PubMed ID: 33783243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of cryopreserved cell aliquots in the high-throughput screening of small interfering RNA libraries.
    Swearingen EA; Fajardo F; Wang X; Watson JE; Quon KC; Kassner PD
    J Biomol Screen; 2010 Jun; 15(5):469-77. PubMed ID: 20371867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of modulators of autophagic flux in an image-based high content siRNA screen.
    Hale CM; Cheng Q; Ortuno D; Huang M; Nojima D; Kassner PD; Wang S; Ollmann MM; Carlisle HJ
    Autophagy; 2016; 12(4):713-26. PubMed ID: 27050463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A curated census of autophagy-modulating proteins and small molecules: candidate targets for cancer therapy.
    Lorenzi PL; Claerhout S; Mills GB; Weinstein JN
    Autophagy; 2014 Jul; 10(7):1316-26. PubMed ID: 24906121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecule regulators of autophagy identified by an image-based high-throughput screen.
    Zhang L; Yu J; Pan H; Hu P; Hao Y; Cai W; Zhu H; Yu AD; Xie X; Ma D; Yuan J
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):19023-8. PubMed ID: 18024584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAB24 facilitates clearance of autophagic compartments during basal conditions.
    Ylä-Anttila P; Mikkonen E; Happonen KE; Holland P; Ueno T; Simonsen A; Eskelinen EL
    Autophagy; 2015; 11(10):1833-48. PubMed ID: 26325487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages.
    VanderVen BC; Hermetter A; Huang A; Maxfield FR; Russell DG; Yates RM
    Cytometry A; 2010 Aug; 77(8):751-60. PubMed ID: 20653015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ULK1-regulated autophagy: A mechanism in cellular protection for ALDH2 against hyperglycemia.
    Liu M; Lu S; He W; Zhang L; Ma Y; Lv P; Ma M; Yu W; Wang J; Zhang M; Zhang Y; Li Y
    Toxicol Lett; 2018 Feb; 283():106-115. PubMed ID: 29128638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of RNAi and small molecule screens to identify targets for drug development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2013; 986():97-104. PubMed ID: 23436408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of autophagy by CUB domain-containing protein 1 signaling is essential for anchorage-independent survival of lung cancer cells.
    Uekita T; Fujii S; Miyazawa Y; Hashiguchi A; Abe H; Sakamoto M; Sakai R
    Cancer Sci; 2013 Jul; 104(7):865-70. PubMed ID: 23510015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-Derived Phenotypic High-Throughput Assay to Identify Small Molecules Restoring Lysosomal Function in Tay-Sachs Disease.
    Colussi DJ; Jacobson MA
    SLAS Discov; 2019 Mar; 24(3):295-303. PubMed ID: 30616450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput screening identified mitoxantrone to induce death of hepatocellular carcinoma cells with autophagy involvement.
    Xie B; He X; Guo G; Zhang X; Li J; Liu J; Lin Y
    Biochem Biophys Res Commun; 2020 Jan; 521(1):232-237. PubMed ID: 31653348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.