BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 25688809)

  • 1. Nanostructured Mo-based electrode materials for electrochemical energy storage.
    Hu X; Zhang W; Liu X; Mei Y; Huang Y
    Chem Soc Rev; 2015 Apr; 44(8):2376-404. PubMed ID: 25688809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.
    Zhang K; Han X; Hu Z; Zhang X; Tao Z; Chen J
    Chem Soc Rev; 2015 Feb; 44(3):699-728. PubMed ID: 25200459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress on Molybdenum Oxides for Rechargeable Batteries.
    Tang K; Farooqi SA; Wang X; Yan C
    ChemSusChem; 2019 Feb; 12(4):755-771. PubMed ID: 30478957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices.
    Gao MR; Xu YF; Jiang J; Yu SH
    Chem Soc Rev; 2013 Apr; 42(7):2986-3017. PubMed ID: 23296312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
    Yan L; Rui X; Chen G; Xu W; Zou G; Luo H
    Nanoscale; 2016 Apr; 8(16):8443-65. PubMed ID: 27074412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials for energy conversion and storage.
    Zhang Q; Uchaker E; Candelaria SL; Cao G
    Chem Soc Rev; 2013 Apr; 42(7):3127-71. PubMed ID: 23455759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage.
    Shinde PA; Jun SC
    ChemSusChem; 2020 Jan; 13(1):11-38. PubMed ID: 31605458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene and graphene-based materials for energy storage applications.
    Zhu J; Yang D; Yin Z; Yan Q; Zhang H
    Small; 2014 Sep; 10(17):3480-98. PubMed ID: 24431122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed transition-metal oxides: design, synthesis, and energy-related applications.
    Yuan C; Wu HB; Xie Y; Lou XW
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1488-504. PubMed ID: 24382683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured conductive polymers for advanced energy storage.
    Shi Y; Peng L; Ding Y; Zhao Y; Yu G
    Chem Soc Rev; 2015 Oct; 44(19):6684-96. PubMed ID: 26119242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured metal sulfides for energy storage.
    Rui X; Tan H; Yan Q
    Nanoscale; 2014 Sep; 6(17):9889-924. PubMed ID: 25073046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors.
    Lou S; Zhao Y; Wang J; Yin G; Du C; Sun X
    Small; 2019 Dec; 15(52):e1904740. PubMed ID: 31778036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.
    Park MS; Kim J; Kim KJ; Lee JW; Kim JH; Yamauchi Y
    Phys Chem Chem Phys; 2015 Dec; 17(46):30963-77. PubMed ID: 26549729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.
    Wang H; Dai H
    Chem Soc Rev; 2013 Apr; 42(7):3088-113. PubMed ID: 23361617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.