These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25688813)

  • 41. Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters.
    DiCiccio AM; Coates GW
    J Am Chem Soc; 2011 Jul; 133(28):10724-7. PubMed ID: 21699247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using Triethylborane to Manipulate Reactivity Ratios in Epoxide-Anhydride Copolymerization: Application to the Synthesis of Polyethers with Degradable Ester Functions.
    Chidara VK; Gnanou Y; Feng X
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism-Inspired Design of Bifunctional Catalysts for the Alternating Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides.
    Abel BA; Lidston CAL; Coates GW
    J Am Chem Soc; 2019 Aug; 141(32):12760-12769. PubMed ID: 31380637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of Co-Catalysts and Polymerization Conditions on Properties of Poly(anhydride-
    Proverbio M; Galotto NG; Losio S; Tritto I; Boggioni L
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31336676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters.
    D'Auria I; D'Aniello S; Viscusi G; Lamberti E; Gorrasi G; Mazzeo M; Pappalardo D
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of Poly(thioester sulfonamide)s via the Ring-Opening Copolymerization of Cyclic Thioanhydride with N-Sulfonyl Aziridine Using Mild Phosphazene Base.
    Song PD; Xia L; Nie X; Chen G; Wang F; Zhang Z; Hong CY; You YZ
    Macromol Rapid Commun; 2022 Sep; 43(17):e2200140. PubMed ID: 35578395
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides.
    Lidston CAL; Abel BA; Coates GW
    J Am Chem Soc; 2020 Nov; 142(47):20161-20169. PubMed ID: 33176426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Copolymerization of Phthalic Anhydride with Epoxides Catalyzed by Amine-Bis(Phenolate) Chromium(III) Complexes.
    Bukowski W; Bukowska A; Sobota A; Pytel M; Bester K
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Well-Defined Poly(Ester Amide)-Based Homo- and Block Copolymers by One-Pot Organocatalytic Anionic Ring-Opening Copolymerization of N-Sulfonyl Aziridines and Cyclic Anhydrides.
    Xu J; Hadjichristidis N
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):6949-6954. PubMed ID: 33351198
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic Studies of Cyclohexene Oxide/CO
    Devaine-Pressing K; Kozak CM
    ChemSusChem; 2017 Mar; 10(6):1266-1273. PubMed ID: 28094470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.
    Van Zee NJ; Coates GW
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2665-8. PubMed ID: 25611489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ring-Opening Copolymerizaton of Cyclohexene Oxide and Succinic Anhydride by Zinc and Magnesium Schiff-Base Complexes Containing Alkoxy Side Arms.
    Virachotikul A; Laiwattanapaisarn N; Wongmahasirikun P; Piromjitpong P; Chainok K; Phomphrai K
    Inorg Chem; 2020 Jul; 59(13):8983-8994. PubMed ID: 32408738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s.
    Matsumura S; Tsukada K; Toshima K
    Int J Biol Macromol; 1999; 25(1-3):161-7. PubMed ID: 10416663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Update and Challenges in Carbon Dioxide-Based Polycarbonate Synthesis.
    Huang J; Worch JC; Dove AP; Coulembier O
    ChemSusChem; 2020 Feb; 13(3):469-487. PubMed ID: 31769174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen-Triggered Switchable Polymerization for the One-Pot Synthesis of CO
    Zhao Y; Wang Y; Zhou X; Xue Z; Wang X; Xie X; Poli R
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14311-14318. PubMed ID: 31282122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO
    Sobrino S; Navarro M; Fernández-Baeza J; Sánchez-Barba LF; Lara-Sánchez A; Garcés A; Castro-Osma JA; Rodríguez AM
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32967153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations.
    Lin B; Waymouth RM
    J Am Chem Soc; 2017 Feb; 139(4):1645-1652. PubMed ID: 28105810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystalline CO
    Kunze L; Wolfs J; Verkoyen P; Frey H
    Macromol Rapid Commun; 2018 Dec; 39(24):e1800558. PubMed ID: 30318666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective.
    Strianese M; Pappalardo D; Mazzeo M; Lamberti M; Pellecchia C
    Dalton Trans; 2021 Jun; 50(23):7898-7916. PubMed ID: 33999066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalyst Engineering Empowers the Creation of Biomass-Derived Polyesters and Polycarbonates.
    Brandolese A; Kleij AW
    Acc Chem Res; 2022 Jun; 55(12):1634-1645. PubMed ID: 35648973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.