These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 25688916)
21. Quantification of Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375 [TBL] [Abstract][Full Text] [Related]
22. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). Esmaeel Q; Jacquard C; Clément C; Sanchez L; Ait Barka E World J Microbiol Biotechnol; 2019 Feb; 35(3):40. PubMed ID: 30739227 [TBL] [Abstract][Full Text] [Related]
23. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold ( Nerva L; Sandrini M; Gambino G; Chitarra W Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32013165 [TBL] [Abstract][Full Text] [Related]
24. Li T; Chen G; Zhang Q Plant Signal Behav; 2021 Oct; 16(10):1940019. PubMed ID: 34254885 [TBL] [Abstract][Full Text] [Related]
25. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. Verhagen BW; Trotel-Aziz P; Couderchet M; Höfte M; Aziz A J Exp Bot; 2010; 61(1):249-60. PubMed ID: 19812243 [TBL] [Abstract][Full Text] [Related]
26. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Peian Z; Haifeng J; Peijie G; Sadeghnezhad E; Qianqian P; Tianyu D; Teng L; Huanchun J; Jinggui F Food Chem; 2021 Feb; 337():127772. PubMed ID: 32777571 [TBL] [Abstract][Full Text] [Related]
27. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. Li B; Wang W; Zong Y; Qin G; Tian S J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291 [TBL] [Abstract][Full Text] [Related]
28. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress. Król A; Weidner S J Plant Physiol; 2017 Apr; 211():114-126. PubMed ID: 28178572 [TBL] [Abstract][Full Text] [Related]
29. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713 [TBL] [Abstract][Full Text] [Related]
30. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Aziz A; Poinssot B; Daire X; Adrian M; Bézier A; Lambert B; Joubert JM; Pugin A Mol Plant Microbe Interact; 2003 Dec; 16(12):1118-28. PubMed ID: 14651345 [TBL] [Abstract][Full Text] [Related]
31. Screening Rahman MU; Hanif M; Wan R; Hou X; Ahmad B; Wang X Molecules; 2018 Dec; 24(1):. PubMed ID: 30577474 [No Abstract] [Full Text] [Related]
32. Váczy KZ; Otto M; Gomba-Tóth A; Geiger A; Golen R; Hegyi-Kaló J; Cels T; Geml J; Zsófi Z; Hegyi ÁI Front Plant Sci; 2024; 15():1433161. PubMed ID: 39166245 [TBL] [Abstract][Full Text] [Related]
33. Comparison of the Impact of Two Molecules on Plant Defense and on Efficacy against Botrytis cinerea in the Vineyard: A Plant Defense Inducer (Benzothiadiazole) and a Fungicide (Pyrimethanil). Bellée A; Cluzet S; Dufour MC; Mérillon JM; Corio-Costet MF J Agric Food Chem; 2018 Apr; 66(13):3338-3350. PubMed ID: 29557656 [TBL] [Abstract][Full Text] [Related]
34. Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin: an alternative pest management of grapevine. Ambrosini V; Issawi M; Sol V; Riou C Sci Rep; 2020 Oct; 10(1):17438. PubMed ID: 33060706 [TBL] [Abstract][Full Text] [Related]
35. Secretion of beta-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Masih EI; Paul B Curr Microbiol; 2002 Jun; 44(6):391-5. PubMed ID: 12000987 [TBL] [Abstract][Full Text] [Related]
36. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Saito S; Margosan D; Michailides TJ; Xiao CL Mycologia; 2016; 108(2):330-43. PubMed ID: 26740541 [TBL] [Abstract][Full Text] [Related]
37. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217 [TBL] [Abstract][Full Text] [Related]
38. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Merz PR; Moser T; Höll J; Kortekamp A; Buchholz G; Zyprian E; Bogs J Physiol Plant; 2015 Mar; 153(3):365-80. PubMed ID: 25132131 [TBL] [Abstract][Full Text] [Related]
39. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Zheng T; Zhang K; Sadeghnezhad E; Jiu S; Zhu X; Dong T; Liu Z; Guan L; Jia H; Fang J Mol Biol Rep; 2020 Oct; 47(10):7349-7363. PubMed ID: 32914265 [TBL] [Abstract][Full Text] [Related]
40. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca Kilani J; Davanture M; Simon A; Zivy M; Fillinger S J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]