These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25688975)

  • 1. Transgenic and mutation-based suppression of a berberine bridge enzyme-like (BBL) gene family reduces alkaloid content in field-grown tobacco.
    Lewis RS; Lopez HO; Bowen SW; Andres KR; Steede WT; Dewey RE
    PLoS One; 2015; 10(2):e0117273. PubMed ID: 25688975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and Agronomic Analysis of Tobacco Genotypes Exhibiting Reduced Nicotine Accumulation Due to Induced Mutations in
    Lewis RS; Drake-Stowe KE; Heim C; Steede T; Smith W; Dewey RE
    Front Plant Sci; 2020; 11():368. PubMed ID: 32318084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum.
    Dewey RE; Xie J
    Phytochemistry; 2013 Oct; 94():10-27. PubMed ID: 23953973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA interference (RNAi)-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves.
    Lewis RS; Jack AM; Morris JW; Robert VJ; Gavilano LB; Siminszky B; Bush LP; Hayes AJ; Dewey RE
    Plant Biotechnol J; 2008 May; 6(4):346-54. PubMed ID: 18282175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco.
    Kajikawa M; Shoji T; Kato A; Hashimoto T
    Plant Physiol; 2011 Apr; 155(4):2010-22. PubMed ID: 21343426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum).
    Hidalgo Martinez D; Payyavula RS; Kudithipudi C; Shen Y; Xu D; Warek U; Strickland JA; Melis A
    Planta; 2020 Apr; 251(4):92. PubMed ID: 32242247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation.
    Hung CY; Fan L; Kittur FS; Sun K; Qiu J; Tang S; Holliday BM; Xiao B; Burkey KO; Bush LP; Conkling MA; Roje S; Xie J
    Plant Physiol; 2013 Feb; 161(2):1049-60. PubMed ID: 23221678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis.
    Deboer KD; Lye JC; Aitken CD; Su AK; Hamill JD
    Plant Mol Biol; 2009 Feb; 69(3):299-312. PubMed ID: 19011764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined reduced expression of two gene families lowers nicotine content to ultra-low levels in cultivated tobacco.
    Kernodle SP; Webb S; Steede TM; Lewis RS
    Plant Cell Rep; 2022 Sep; 41(9):1853-1862. PubMed ID: 35779084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L.
    DeBoer KD; Dalton HL; Edward FJ; Hamill JD
    Phytochemistry; 2011 Apr; 72(4-5):344-55. PubMed ID: 21232776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco.
    Shoji T; Kajikawa M; Hashimoto T
    Plant Cell; 2010 Oct; 22(10):3390-409. PubMed ID: 20959558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of a key gene of the nicotine biosynthetic pathway severely affects tobacco growth under field, but not greenhouse conditions.
    Smith WA; Matsuba Y; Dewey RE
    BMC Res Notes; 2022 Sep; 15(1):291. PubMed ID: 36068583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Factors for Enhancement of Nicotine Levels in Cultivated Tobacco.
    Wang B; Lewis RS; Shi J; Song Z; Gao Y; Li W; Chen H; Qu R
    Sci Rep; 2015 Dec; 5():17360. PubMed ID: 26626731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco (
    Liu H; Kotova TI; Timko MP
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31739571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene.
    Lewis RS; Bowen SW; Keogh MR; Dewey RE
    Phytochemistry; 2010 Dec; 71(17-18):1988-98. PubMed ID: 20977974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco.
    Häkkinen ST; Tilleman S; Swiatek A; De Sutter V; Rischer H; Vanhoutte I; Van Onckelen H; Hilson P; Inzé D; Oksman-Caldentey KM; Goossens A
    Phytochemistry; 2007; 68(22-24):2773-85. PubMed ID: 18001808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L.
    Zhao D; Qin LJ; Zhao DG
    Plant Physiol Biochem; 2016 Oct; 107():214-221. PubMed ID: 27314515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The columbamine O-methyltransferase gene (CoOMT) is capable of increasing alkaloid content in transgenic tobacco plants.
    Tu TQ; Do PT; Van Nguyen D; Pham NTT; Nguyen TT; Chu MH
    Mol Biol Rep; 2022 Apr; 49(4):2667-2675. PubMed ID: 35059967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editing of
    Burner N; Kernodle SP; Steede T; Lewis RS
    Mol Breed; 2022 Apr; 42(4):20. PubMed ID: 37309461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids.
    Shoji T; Hashimoto T; Saito K
    J Exp Bot; 2024 Mar; 75(6):1741-1753. PubMed ID: 37647764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.