These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25688989)

  • 1. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains.
    Vohidov F; Coughlin JM; Ball ZT
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4587-91. PubMed ID: 25688989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems.
    Chen Z; Vohidov F; Coughlin JM; Stagg LJ; Arold ST; Ladbury JE; Ball ZT
    J Am Chem Soc; 2012 Jun; 134(24):10138-45. PubMed ID: 22621321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific protein modification with a dirhodium metallopeptide catalyst.
    Chen Z; Popp BV; Bovet CL; Ball ZT
    ACS Chem Biol; 2011 Sep; 6(9):920-5. PubMed ID: 21671614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.
    Martin SC; Minus MB; Ball ZT
    Methods Enzymol; 2016; 580():1-19. PubMed ID: 27586326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Selectivity in Dirhodium Metallopeptide Catalysts for Protein Modification.
    Martin SC; Vohidov F; Wang H; Knudsen SE; Marzec AA; Ball ZT
    Bioconjug Chem; 2017 Feb; 28(2):659-665. PubMed ID: 28035818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study.
    Ball ZT
    Acc Chem Res; 2013 Feb; 46(2):560-70. PubMed ID: 23210518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the SH3 domain in Ca2+-mediated regulation of Src family kinases.
    Monteiro AN
    Biochimie; 2006 Jul; 88(7):905-11. PubMed ID: 16546311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-specific inhibition of a designed metallopeptide catalyst.
    Popp BV; Chen Z; Ball ZT
    Chem Commun (Camb); 2012 Aug; 48(60):7492-4. PubMed ID: 22728748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: loop flexibility and amyloid aggregation.
    Martín-García JM; Luque I; Mateo PL; Ruiz-Sanz J; Cámara-Artigas A
    FEBS Lett; 2007 May; 581(9):1701-6. PubMed ID: 17418139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen.
    Sambasivan R; Ball ZT
    Chirality; 2013 Sep; 25(9):493-7. PubMed ID: 23749505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SH3 and SH2 domains are capable of directing specificity in protein interactions between the non-receptor tyrosine kinases cSrc and cYes.
    Summy JM; Guappone AC; Sudol M; Flynn DC
    Oncogene; 2000 Jan; 19(1):155-60. PubMed ID: 10644991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species.
    Serna P; Gates BC
    J Am Chem Soc; 2011 Apr; 133(13):4714-7. PubMed ID: 21391590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies.
    Ohata J; Ball ZT
    J Am Chem Soc; 2017 Sep; 139(36):12617-12622. PubMed ID: 28810739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of orientational isomerism in rhodium(II) metallopeptides by pyrene fluorescence.
    Sambasivan R; Ball ZT
    Org Biomol Chem; 2012 Oct; 10(41):8203-6. PubMed ID: 23001352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain interactions in protein tyrosine kinase Csk.
    Sondhi D; Cole PA
    Biochemistry; 1999 Aug; 38(34):11147-55. PubMed ID: 10460171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.
    Ward TR
    Chemistry; 2005 Jun; 11(13):3798-804. PubMed ID: 15761912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding, domain orientation, and dynamics of the Lck SH3-SH2 domain pair and comparison with other Src-family kinases.
    Hofmann G; Schweimer K; Kiessling A; Hofinger E; Bauer F; Hoffmann S; Rösch P; Campbell ID; Werner JM; Sticht H
    Biochemistry; 2005 Oct; 44(39):13043-50. PubMed ID: 16185072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular recognition in protein modification with rhodium metallopeptides.
    Ball ZT
    Curr Opin Chem Biol; 2015 Apr; 25():98-102. PubMed ID: 25588960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.