These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25689135)

  • 1. A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-Fourier transform infrared spectroscopy.
    Shi F; Ross PN; Zhao H; Liu G; Somorjai GA; Komvopoulos K
    J Am Chem Soc; 2015 Mar; 137(9):3181-4. PubMed ID: 25689135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the interfacial properties of an electroplated Sn thin film electrode/electrolyte using in situ MFTIRS and EQCM.
    Li JT; Chen SR; Fan XY; Huang L; Sun SG
    Langmuir; 2007 Dec; 23(26):13174-80. PubMed ID: 18020462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries.
    Santner HJ; Korepp C; Winter M; Besenhard JO; Möller KC
    Anal Bioanal Chem; 2004 May; 379(2):266-71. PubMed ID: 14968287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte.
    Zhuang GV; Xu K; Yang H; Jow TR; Ross PN
    J Phys Chem B; 2005 Sep; 109(37):17567-73. PubMed ID: 16853247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries.
    Xu K; Zhuang GV; Allen JL; Lee U; Zhang SS; Ross PN; Jow TR
    J Phys Chem B; 2006 Apr; 110(15):7708-19. PubMed ID: 16610865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.
    Horowitz Y; Han HL; Ross PN; Somorjai GA
    J Am Chem Soc; 2016 Jan; 138(3):726-9. PubMed ID: 26651259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.
    Yang Z; Gewirth AA; Trahey L
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6557-66. PubMed ID: 25741901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operando Fourier Transform Infrared Investigation of Cathode Electrolyte Interphase Dynamic Reversible Evolution on Li
    Meng Y; Chen G; Shi L; Liu H; Zhang D
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45108-45117. PubMed ID: 31710199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode.
    Assary RS; Lu J; Luo X; Zhang X; Ren Y; Wu H; Albishri HM; El-Hady DA; Al-Bogami AS; Curtiss LA; Amine K
    Chemphyschem; 2014 Jul; 15(10):2077-83. PubMed ID: 24986260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.
    Zeng Z; Liang WI; Chu YH; Zheng H
    Faraday Discuss; 2014; 176():95-107. PubMed ID: 25597983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy.
    Vivek JP; Berry N; Papageorgiou G; Nichols RJ; Hardwick LJ
    J Am Chem Soc; 2016 Mar; 138(11):3745-51. PubMed ID: 26909538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinonitrile as a corrosion inhibitor of copper current collectors for overdischarge protection of lithium ion batteries.
    Kim YS; Lee SH; Son MY; Jung YM; Song HK; Lee H
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2039-43. PubMed ID: 24444831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse voltammetric and ac impedance spectroscopic studies on lithium ion transfer at an electrolyte/Li4/3Ti5/3O4 electrode interface.
    Doi T; Iriyama Y; Abe T; Ogumi Z
    Anal Chem; 2005 Mar; 77(6):1696-700. PubMed ID: 15762574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM.
    Sharon D; Etacheri V; Garsuch A; Afri M; Frimer AA; Aurbach D
    J Phys Chem Lett; 2013 Jan; 4(1):127-31. PubMed ID: 26291224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IR Near-Field Study of the Solid Electrolyte Interphase on a Tin Electrode.
    Ayache M; Lux SF; Kostecki R
    J Phys Chem Lett; 2015 Apr; 6(7):1126-9. PubMed ID: 26262960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide.
    Liu XR; Wang L; Wan LJ; Wang D
    ACS Appl Mater Interfaces; 2015 May; 7(18):9573-80. PubMed ID: 25899800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.