These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25689308)

  • 1. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus.
    Lan S; Wu L; Zhang D; Hu C
    Bioresour Technol; 2015 Apr; 182():144-150. PubMed ID: 25689308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new biofilm based microalgal cultivation approach on shifting sand surface for desert cyanobacterium Microcoleus vaginatus.
    Lan S; Wu L; Yang H; Zhang D; Hu C
    Bioresour Technol; 2017 Aug; 238():602-608. PubMed ID: 28482286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inoculation concentration modulating the secretion and accumulation pattern of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus.
    Qian L; Wu L; Yang L; Zhang Z
    Biotechnol Appl Biochem; 2021 Apr; 68(2):330-337. PubMed ID: 32337747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desiccation provides photosynthetic protection for crust cyanobacteria Microcoleus vaginatus from high temperature.
    Lan S; Wu L; Zhang D; Hu C
    Physiol Plant; 2014 Oct; 152(2):345-54. PubMed ID: 24611508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements.
    Ranglová K; Lakatos GE; Manoel JAC; Grivalský T; Masojídek J
    Folia Microbiol (Praha); 2019 Sep; 64(5):615-625. PubMed ID: 31363995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures.
    Hunt RW; Chinnasamy S; Das KC
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1350-65. PubMed ID: 21431321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of applying growth-promotion bacteria of Chlorella sorokiniana to open cultivation systems.
    Zhou Z; Li Q; Song K; Wang R; Wen S; Zhang D; Cong W
    Bioprocess Biosyst Eng; 2021 Jul; 44(7):1567-1576. PubMed ID: 33656614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Response of the artificial cyanobacterial crusts to low temperature and light stress and the micro-structure changes under laboratory conditions].
    Rao BQ; Li H; Xiong Y; Lan SB; Li DH; Liu YD
    Huan Jing Ke Xue; 2012 Aug; 33(8):2793-803. PubMed ID: 23213907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae.
    Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK
    J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell growth and lipid accumulation of a microalgal mutant
    Ma C; Zhang YB; Ho SH; Xing DF; Ren NQ; Liu BF
    Biotechnol Biofuels; 2017; 10():260. PubMed ID: 29151889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Abiotic Factors on Abundance and Photosynthetic Performance of Airborne Cyanobacteria and Microalgae Isolated from the Southern Baltic Sea Region.
    Wiśniewska K; Śliwińska-Wilczewska S; Lewandowska A; Konik M
    Cells; 2021 Jan; 10(1):. PubMed ID: 33429949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions.
    Gim GH; Kim JK; Kim HS; Kathiravan MN; Yang H; Jeong SH; Kim SW
    Bioprocess Biosyst Eng; 2014 Feb; 37(2):99-106. PubMed ID: 23640179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal and cyanobacterial cultivation: the supply of nutrients.
    Markou G; Vandamme D; Muylaert K
    Water Res; 2014 Nov; 65():186-202. PubMed ID: 25113948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Carbohydrate Productivity of Chlorella sp. AE10 in Semi-continuous Cultivation and Unraveling the Mechanism by Flow Cytometry.
    Yuan Y; Liu H; Li X; Qi W; Cheng D; Tang T; Zhao Q; Wei W; Sun Y
    Appl Biochem Biotechnol; 2018 Jun; 185(2):419-433. PubMed ID: 29178054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor.
    Ketheesan B; Nirmalakhandan N
    Bioresour Technol; 2012 Mar; 108():196-202. PubMed ID: 22277208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sufficient utilization of natural fluctuating light intensity is an effective approach of promoting lipid productivity in oleaginous microalgal cultivation outdoors.
    He Q; Yang H; Xu L; Xia L; Hu C
    Bioresour Technol; 2015 Mar; 180():79-87. PubMed ID: 25590422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing algal photosynthetic productivity by integrating ecophysiology with systems biology.
    Peers G
    Trends Biotechnol; 2014 Nov; 32(11):551-555. PubMed ID: 25306192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China.
    Zhang B; Li R; Xiao P; Su Y; Zhang Y
    J Basic Microbiol; 2016 Mar; 56(3):308-20. PubMed ID: 26479723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor.
    Jochum M; Moncayo LP; Jo YK
    PLoS One; 2018; 13(9):e0203456. PubMed ID: 30208074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox.
    Cho DH; Cho K; Heo J; Kim U; Lee YJ; Choi DY; Yoo C; Kim HS; Bae S
    J Microbiol Biotechnol; 2020 Nov; 30(11):1785-1791. PubMed ID: 32830191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.