BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25689365)

  • 1. Enantiomers of 3-methylspermidine selectively modulate deoxyhypusine synthesis and reveal important determinants for spermidine transport.
    Hyvönen MT; Khomutov M; Petit M; Weisell J; Kochetkov SN; Alhonen L; Vepsäläinen J; Khomutov AR; Keinänen TA
    ACS Chem Biol; 2015 Jun; 10(6):1417-24. PubMed ID: 25689365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of novel C-methylated spermidine analogs on cell growth via hypusination of eukaryotic translation initiation factor 5A.
    Hyvönen MT; Keinänen TA; Khomutov M; Simonian A; Vepsäläinen J; Park JH; Khomutov AR; Alhonen L; Park MH
    Amino Acids; 2012 Feb; 42(2-3):685-95. PubMed ID: 21861168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma.
    Schultz CR; Geerts D; Mooney M; El-Khawaja R; Koster J; Bachmann AS
    Biochem J; 2018 Jan; 475(2):531-545. PubMed ID: 29295892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine.
    Byers TL; Lakanen JR; Coward JK; Pegg AE
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):363-8. PubMed ID: 7980394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification.
    Wolff EC; Kang KR; Kim YS; Park MH
    Amino Acids; 2007 Aug; 33(2):341-50. PubMed ID: 17476569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spermidine analogue GC7 (N1-guanyl-1,7-diamineoheptane) induces autophagy through a mechanism not involving the hypusination of eIF5A.
    Oliverio S; Corazzari M; Sestito C; Piredda L; Ippolito G; Piacentini M
    Amino Acids; 2014 Dec; 46(12):2767-76. PubMed ID: 25218134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A).
    Park MH
    J Biochem; 2006 Feb; 139(2):161-9. PubMed ID: 16452303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dramatic attenuation of hypusine formation on eukaryotic initiation factor 5A during senescence of IMR-90 human diploid fibroblasts.
    Chen ZP; Chen KY
    J Cell Physiol; 1997 Mar; 170(3):248-54. PubMed ID: 9066781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the activities of variant forms of eIF-4D. The requirement for hypusine or deoxyhypusine.
    Park MH; Wolff EC; Smit-McBride Z; Hershey JW; Folk JE
    J Biol Chem; 1991 May; 266(13):7988-94. PubMed ID: 1850732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor.
    Lee YB; Joe YA; Wolff EC; Dimitriadis EK; Park MH
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):273-81. PubMed ID: 10229683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher activity of recombinant bovine deoxyhypusine synthase vs. human deoxyhypusine synthase.
    Huang JK; Tsai S; Huang GH; Gowda PG; Walzer AM; Wen L
    Protein Expr Purif; 2004 May; 35(1):32-8. PubMed ID: 15039063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis.
    Hyvönen MT; Keinänen TA; Cerrada-Gimenez M; Sinervirta R; Grigorenko N; Khomutov AR; Vepsäläinen J; Alhonen L; Jänne J
    J Biol Chem; 2007 Nov; 282(48):34700-6. PubMed ID: 17901051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of active recombinant eIF5A: reconstitution in E.coli of eukaryotic hypusine modification of eIF5A by its coexpression with modifying enzymes.
    Park JH; Dias CA; Lee SB; Valentini SR; Sokabe M; Fraser CS; Park MH
    Protein Eng Des Sel; 2011 Mar; 24(3):301-9. PubMed ID: 21131325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent roles of eIF5A and polyamines in cell proliferation.
    Nishimura K; Murozumi K; Shirahata A; Park MH; Kashiwagi K; Igarashi K
    Biochem J; 2005 Feb; 385(Pt 3):779-85. PubMed ID: 15377278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new non-radioactive deoxyhypusine synthase assay adaptable to high throughput screening.
    Park MH; Mandal A; Mandal S; Wolff EC
    Amino Acids; 2017 Nov; 49(11):1793-1804. PubMed ID: 28819816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase.
    Park JH; Wolff EC; Folk JE; Park MH
    J Biol Chem; 2003 Aug; 278(35):32683-91. PubMed ID: 12788913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation.
    Park MH; Wolff EC; Folk JE
    Biofactors; 1993 May; 4(2):95-104. PubMed ID: 8347280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human deoxyhypusine synthase: interrelationship between binding of NAD and substrates.
    Lee CH; Park MH
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):851-7. PubMed ID: 11104695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells.
    Gerner EW; Mamont PS; Bernhardt A; Siat M
    Biochem J; 1986 Oct; 239(2):379-86. PubMed ID: 3101665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational formation of hypusine in eIF5A: implications in human neurodevelopment.
    Park MH; Kar RK; Banka S; Ziegler A; Chung WK
    Amino Acids; 2022 Apr; 54(4):485-499. PubMed ID: 34273022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.