These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25690152)

  • 1. On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis.
    Taller D; Richards K; Slouka Z; Senapati S; Hill R; Go DB; Chang HC
    Lab Chip; 2015 Apr; 15(7):1656-66. PubMed ID: 25690152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Acoustic Wave Lysis and Ion-Exchange Membrane Quantification of Exosomal MicroRNA.
    Richards KE; Go DB; Hill R
    Methods Mol Biol; 2017; 1580():59-70. PubMed ID: 28439826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes.
    Joshi GK; Deitz-McElyea S; Liyanage T; Lawrence K; Mali S; Sardar R; Korc M
    ACS Nano; 2015 Nov; 9(11):11075-89. PubMed ID: 26444644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating.
    Zhang P; He M; Zeng Y
    Lab Chip; 2016 Aug; 16(16):3033-42. PubMed ID: 27045543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis.
    Zhao Z; Yang Y; Zeng Y; He M
    Lab Chip; 2016 Feb; 16(3):489-96. PubMed ID: 26645590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays.
    Salehi-Reyhani A; Gesellchen F; Mampallil D; Wilson R; Reboud J; Ces O; Willison KR; Cooper JM; Klug DR
    Anal Chem; 2015 Feb; 87(4):2161-9. PubMed ID: 25514590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exosomal microRNA: a diagnostic marker for lung cancer.
    Rabinowits G; Gerçel-Taylor C; Day JM; Taylor DD; Kloecker GH
    Clin Lung Cancer; 2009 Jan; 10(1):42-6. PubMed ID: 19289371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope.
    Roy S; Soh JH; Gao Z
    Lab Chip; 2011 Jun; 11(11):1886-94. PubMed ID: 21526238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Machine Learning and Nanofluidic Technology To Diagnose Pancreatic Cancer Using Exosomes.
    Ko J; Bhagwat N; Yee SS; Ortiz N; Sahmoud A; Black T; Aiello NM; McKenzie L; O'Hara M; Redlinger C; Romeo J; Carpenter EL; Stanger BZ; Issadore D
    ACS Nano; 2017 Nov; 11(11):11182-11193. PubMed ID: 29019651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fires novel report of exosomal electrochemical sensor for sensing micro RNAs by using multi covalent attachment p19 with high sensitivity.
    Ghazizadeh E; Naseri Z; Jaafari MR; Forozandeh-Moghadam M; Hosseinkhani S
    Biosens Bioelectron; 2018 Aug; 113():74-81. PubMed ID: 29734033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating diversity of exosomes: biophysical and molecular characterization methods.
    Khatun Z; Bhat A; Sharma S; Sharma A
    Nanomedicine (Lond); 2016 Sep; 11(17):2359-77. PubMed ID: 27488053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device.
    Ramshani Z; Zhang C; Richards K; Chen L; Xu G; Stiles BL; Hill R; Senapati S; Go DB; Chang HC
    Commun Biol; 2019; 2():189. PubMed ID: 31123713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low pH increases the yield of exosome isolation.
    Ban JJ; Lee M; Im W; Kim M
    Biochem Biophys Res Commun; 2015 May; 461(1):76-9. PubMed ID: 25849885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology.
    He M; Crow J; Roth M; Zeng Y; Godwin AK
    Lab Chip; 2014 Oct; 14(19):3773-80. PubMed ID: 25099143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip.
    Zhang P; Zhou X; He M; Shang Y; Tetlow AL; Godwin AK; Zeng Y
    Nat Biomed Eng; 2019 Jun; 3(6):438-451. PubMed ID: 31123323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
    Wu M; Ouyang Y; Wang Z; Zhang R; Huang PH; Chen C; Li H; Li P; Quinn D; Dao M; Suresh S; Sadovsky Y; Huang TJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10584-10589. PubMed ID: 28923936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and analysis of circulating exosomal microRNA in human body fluids.
    Lässer C
    Methods Mol Biol; 2013; 1024():109-28. PubMed ID: 23719946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of serum exosome isolation methods for microRNA profiling.
    Rekker K; Saare M; Roost AM; Kubo AL; Zarovni N; Chiesi A; Salumets A; Peters M
    Clin Biochem; 2014 Jan; 47(1-2):135-8. PubMed ID: 24183884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.