These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 25690387)
41. Engineering Escherichia coli coculture systems for the production of biochemical products. Zhang H; Pereira B; Li Z; Stephanopoulos G Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796 [TBL] [Abstract][Full Text] [Related]
42. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Huang Y; Russell WK; Wan W; Pai PJ; Russell DH; Liu W Mol Biosyst; 2010 Apr; 6(4):683-6. PubMed ID: 20237646 [TBL] [Abstract][Full Text] [Related]
43. Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts. Yoo JI; Seppälä S; OʼMalley MA Nat Commun; 2020 Oct; 11(1):5459. PubMed ID: 33122649 [TBL] [Abstract][Full Text] [Related]
44. Metabolic engineering and synthetic biology in strain development. Lee SY ACS Synth Biol; 2012 Nov; 1(11):491-2. PubMed ID: 23656224 [No Abstract] [Full Text] [Related]
45. Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit. Perry N; Nelson EM; Timp G ACS Synth Biol; 2016 Dec; 5(12):1421-1432. PubMed ID: 27346524 [TBL] [Abstract][Full Text] [Related]
47. Building-in biosafety for synthetic biology. Wright O; Stan GB; Ellis T Microbiology (Reading); 2013 Jul; 159(Pt 7):1221-1235. PubMed ID: 23519158 [TBL] [Abstract][Full Text] [Related]
48. Engineering stringent genetic biocontainment of yeast with a protein stability switch. Hoffmann SA; Cai Y Nat Commun; 2024 Feb; 15(1):1060. PubMed ID: 38316765 [TBL] [Abstract][Full Text] [Related]
49. Kirk, to boldly go into synthetic biology. Kirk RJ; Waltz E Nat Biotechnol; 2015 Oct; 33(10):1017-8. PubMed ID: 26448077 [No Abstract] [Full Text] [Related]
50. A genetically encoded fluorescent amino acid. Wang J; Xie J; Schultz PG J Am Chem Soc; 2006 Jul; 128(27):8738-9. PubMed ID: 16819861 [TBL] [Abstract][Full Text] [Related]
51. Gene Architectures that Minimize Cost of Gene Expression. Frumkin I; Schirman D; Rotman A; Li F; Zahavi L; Mordret E; Asraf O; Wu S; Levy SF; Pilpel Y Mol Cell; 2017 Jan; 65(1):142-153. PubMed ID: 27989436 [TBL] [Abstract][Full Text] [Related]
52. Development of a new E. coli strain to detect oxidative mutation and its application to the fungicide o-phenylphenol and its metabolites. Tani S; Yonezawa Y; Morisawa S; Nishioka H Mutat Res; 2007 Apr; 628(2):123-8. PubMed ID: 17251053 [TBL] [Abstract][Full Text] [Related]
53. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Borkowski O; Ceroni F; Stan GB; Ellis T Curr Opin Microbiol; 2016 Oct; 33():123-130. PubMed ID: 27494248 [TBL] [Abstract][Full Text] [Related]
55. The dual-use conundrum. Berg P Science; 2012 Sep; 337(6100):1273. PubMed ID: 22984033 [No Abstract] [Full Text] [Related]
56. Total amino acid stabilization during cell-free protein synthesis reactions. Calhoun KA; Swartz JR J Biotechnol; 2006 May; 123(2):193-203. PubMed ID: 16442654 [TBL] [Abstract][Full Text] [Related]
57. A need for speed: genetic encoding of rapid cycloaddition chemistries for protein labelling in living cells. Schmidt MJ; Summerer D Chembiochem; 2012 Jul; 13(11):1553-7. PubMed ID: 22753121 [TBL] [Abstract][Full Text] [Related]
58. Synthetic biologists and conservationists open talks. Callaway E Nature; 2013 Apr; 496(7445):281. PubMed ID: 23598317 [No Abstract] [Full Text] [Related]
59. Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. Rodrigues JL; Rodrigues LR Trends Biotechnol; 2018 Feb; 36(2):186-198. PubMed ID: 29126571 [TBL] [Abstract][Full Text] [Related]