These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25690413)

  • 21. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation.
    Stern JC; Chanton J; Abichou T; Powelson D; Yuan L; Escoriza S; Bogner J
    Waste Manag; 2007; 27(9):1248-58. PubMed ID: 17005386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers?
    Gebert J; Röwer IU; Scharff H; Roncato CD; Cabral AR
    Waste Manag; 2011 May; 31(5):987-94. PubMed ID: 21074981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capacity for biodegradation of CFCs and HCFCs in a methane oxidative counter-gradient laboratory system simulating landfill soil covers.
    Scheutz C; Kjeldsen P
    Environ Sci Technol; 2003 Nov; 37(22):5143-9. PubMed ID: 14655700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of various environmental and design parameters on methane oxidation in a model biofilter.
    Park S; Brown KW; Thomas JC
    Waste Manag Res; 2002 Oct; 20(5):434-44. PubMed ID: 12498480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils.
    Streese-Kleeberg J; Rachor I; Gebert J; Stegmann R
    Waste Manag; 2011 May; 31(5):995-1001. PubMed ID: 20971626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.
    He R; Wang J; Xia FF; Mao LJ; Shen DS
    Chemosphere; 2012 Oct; 89(6):672-9. PubMed ID: 22776254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scrutinizing compost properties and their impact on methane oxidation efficiency.
    Huber-Humer M; Tintner J; Böhm K; Lechner P
    Waste Manag; 2011 May; 31(5):871-83. PubMed ID: 21036026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observations on the methane oxidation capacity of landfill soils.
    Chanton J; Abichou T; Langford C; Spokas K; Hater G; Green R; Goldsmith D; Barlaz MA
    Waste Manag; 2011 May; 31(5):914-25. PubMed ID: 20889326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of green waste biocovers for enhancing methane oxidation.
    Mei C; Yazdani R; Han B; Mostafid ME; Chanton J; VanderGheynst J; Imhoff P
    Waste Manag; 2015 May; 39():205-15. PubMed ID: 25792440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells.
    Adams BL; Besnard F; Bogner J; Hilger H
    Waste Manag; 2011 May; 31(5):1065-73. PubMed ID: 21354776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.
    Ndanga ÉM; Lopera CB; Bradley RL; Cabral AR
    Waste Manag; 2016 Sep; 55():313-20. PubMed ID: 27177464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of respiration in compost landfill biocovers intended for methane oxidation.
    Scheutz C; Pedicone A; Pedersen GB; Kjeldsen P
    Waste Manag; 2011 May; 31(5):895-902. PubMed ID: 21292472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.
    Haubrichs R; Widmann R
    Waste Manag; 2006; 26(4):408-16. PubMed ID: 16386886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Availability and properties of materials for the Fakse Landfill biocover.
    Pedersen GB; Scheutz C; Kjeldsen P
    Waste Manag; 2011 May; 31(5):884-94. PubMed ID: 21185710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical analysis of coupled effects of microbe and root architecture on methane oxidation in vegetated landfill covers.
    Feng S; Leung AK; Ng CWW; Liu HW
    Sci Total Environ; 2017 Dec; 599-600():1954-1964. PubMed ID: 28549371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fully coupled model for water-gas-heat reactive transport with methane oxidation in landfill covers.
    Ng CW; Feng S; Liu HW
    Sci Total Environ; 2015 Mar; 508():307-19. PubMed ID: 25489976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane oxidation in a boreal climate in an experimental landfill cover composed from mechanically-biologically treated waste.
    Einola JK; Sormunen KM; Rintala JA
    Sci Total Environ; 2008 Dec; 407(1):67-83. PubMed ID: 18823644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.
    Bogner JE; Spokas KA; Chanton JP
    J Environ Qual; 2011; 40(3):1010-20. PubMed ID: 21546687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas.
    Shangjie C; Yongqiong W; Fuqing X; Zhilin X; Xiaoping Z; Xia S; Juan L; Tiantao Z; Shibin W
    Environ Res; 2023 Jun; 227():115804. PubMed ID: 37003556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.
    Schroth MH; Eugster W; Gómez KE; Gonzalez-Gil G; Niklaus PA; Oester P
    Waste Manag; 2012 May; 32(5):879-89. PubMed ID: 22143049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.