These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25690475)

  • 1. A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum.
    Lin N; Li J; Lu Z; Bian L; Zheng L; Cao Q; Ding Z
    Nanoscale; 2015 Mar; 7(11):4971-7. PubMed ID: 25690475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly fluorescent rhodamine B nanoparticles entrapped in hybrid glasses.
    Gutiérrez MC; Hortigüela MJ; Ferrer ML; del Monte F
    Langmuir; 2007 Feb; 23(4):2175-9. PubMed ID: 17279710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disassembly-driven turn-on fluorescent nanoprobes for selective protein detection.
    Mizusawa K; Ishida Y; Takaoka Y; Miyagawa M; Tsukiji S; Hamachi I
    J Am Chem Soc; 2010 Jun; 132(21):7291-3. PubMed ID: 20462178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media.
    Chatterjee A; Santra M; Won N; Kim S; Kim JK; Kim SB; Ahn KH
    J Am Chem Soc; 2009 Feb; 131(6):2040-1. PubMed ID: 19159289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Ni(II) ion-DNA interactions with methylene blue as fluorescent probe.
    Zhang LZ; Cheng P
    J Inorg Biochem; 2004 Apr; 98(4):569-74. PubMed ID: 15041235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective tracking of lysosomal Cu2+ ions using simultaneous target- and location-activated fluorescent nanoprobes.
    Li Y; Zhao Y; Chan W; Wang Y; You Q; Liu C; Zheng J; Li J; Yang S; Yang R
    Anal Chem; 2015 Jan; 87(1):584-91. PubMed ID: 25435382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A turn-on fluorescent nanoprobe for selective determination of selenium(IV).
    Liang S; Chen J; Pierce DT; Zhao JX
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5165-73. PubMed ID: 23676764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid determination of hydrogen peroxide produced by Lactobacillus using enzyme coupled rhodamine isocyanide/calcium phosphate nanoparticles.
    Viswanathan K; Vadivoo VS; Raj GD
    Biosens Bioelectron; 2014 Nov; 61():200-8. PubMed ID: 24886832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent carbon nanoparticles: A low-temperature trypsin-assisted preparation and Fe(3+) sensing.
    Feng J; Chen Y; Han Y; Liu J; Ren C; Chen X
    Anal Chim Acta; 2016 Jul; 926():107-17. PubMed ID: 27216399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions.
    Li C; Liu J; Alonso S; Li F; Zhang Y
    Nanoscale; 2012 Sep; 4(19):6065-71. PubMed ID: 22930418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BODIPY-based self-assembled nanoparticles as fluorescence turn-on sensor for the selective detection of zinc in human hair.
    Jia MY; Wang Y; Liu Y; Niu LY; Feng L
    Biosens Bioelectron; 2016 Nov; 85():515-521. PubMed ID: 27209578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upconversional Nanoprobes with Highly Efficient Energy Transfer for Ultrasensitive Detection of Alkaline Phosphatase.
    Gao M; Wu R; Mei Q; Zhang C; Ling X; Deng S; He H; Zhang Y
    ACS Sens; 2019 Nov; 4(11):2864-2868. PubMed ID: 31592656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX; Zhang XB; Li Z; Gong YJ; Wu XY; Jin Z; He CM; Jian LX; Zhang J; Shen GL; Yu RQ
    Anal Chem; 2010 Apr; 82(8):3108-13. PubMed ID: 20334436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives.
    Sasaki H; Hanaoka K; Urano Y; Terai T; Nagano T
    Bioorg Med Chem; 2011 Feb; 19(3):1072-8. PubMed ID: 20620067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells.
    Zhu X; Zhao T; Nie Z; Miao Z; Liu Y; Yao S
    Nanoscale; 2016 Jan; 8(4):2205-11. PubMed ID: 26730681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blinking triggered by the change in the solvent accessibility of a fluorescent molecule.
    Kawai K; Koshimo T; Maruyama A; Majima T
    Chem Commun (Camb); 2014 Sep; 50(72):10478-81. PubMed ID: 25068376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplified fluorescence quenching of lucigenin self-assembled inside silica/chitosan nanoparticles by Cl⁻.
    Tian R; Qu Y; Zheng X
    Anal Chem; 2014 Sep; 86(18):9114-21. PubMed ID: 25135186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A depropargylation-triggered fluorescence "turn-on" probe for the detection of Pd2+ based on a bispropargylamine-rhodamine conjugate.
    Balamurugan R; Chien CC; Wu KM; Chiu YH; Liu JH
    Analyst; 2013 Mar; 138(5):1564-9. PubMed ID: 23348888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Specific Turn-On Fluorescent Sensing for Ultrasensitive and Selective Detection of Phosphate in Environmental Samples Based on Antenna Effect-Improved FRET by Surfactant.
    Wu H; Tong C
    ACS Sens; 2018 Aug; 3(8):1539-1545. PubMed ID: 30044086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds.
    Ma C; Zeng F; Huang L; Wu S
    J Phys Chem B; 2011 Feb; 115(5):874-82. PubMed ID: 21250732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.