These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 25690698)
1. Rigidity of poly-L-glutamic acid scaffolds: Influence of secondary and supramolecular structure. Nickels JD; Perticaroli S; Ehlers G; Feygenson M; Sokolov AP J Biomed Mater Res A; 2015 Sep; 103(9):2909-18. PubMed ID: 25690698 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of bimodal porous poly(γ-benzyl-L-glutamate) scaffolds for bone tissue engineering. Qian J; Yong X; Xu W; Jin X Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4587-93. PubMed ID: 24094164 [TBL] [Abstract][Full Text] [Related]
3. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering. Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable interpolyelectrolyte complexes based on methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) and chitosan. Luo K; Yin J; Song Z; Cui L; Cao B; Chen X Biomacromolecules; 2008 Oct; 9(10):2653-61. PubMed ID: 18754685 [TBL] [Abstract][Full Text] [Related]
5. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
6. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC; Chiu CH; Tang SJ; Hsieh MF Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262 [TBL] [Abstract][Full Text] [Related]
8. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite. Shokrollahi P; Mirzadeh H; Scherman OA; Huck WT J Biomed Mater Res A; 2010 Oct; 95(1):209-21. PubMed ID: 20574978 [TBL] [Abstract][Full Text] [Related]
9. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
16. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Tsao CT; Chang CH; Lin YY; Wu MF; Wang JL; Han JL; Hsieh KH Carbohydr Res; 2010 Aug; 345(12):1774-80. PubMed ID: 20598293 [TBL] [Abstract][Full Text] [Related]
18. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
19. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Hofmann S; Stok KS; Kohler T; Meinel AJ; Müller R Acta Biomater; 2014 Jan; 10(1):308-17. PubMed ID: 24013025 [TBL] [Abstract][Full Text] [Related]
20. Porous scaffolds based on cross-linking of poly(L-glutamic acid). Cao B; Yin J; Yan S; Cui L; Chen X; Xie Y Macromol Biosci; 2011 Mar; 11(3):427-34. PubMed ID: 21108455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]