These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 25690846)
1. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries. Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846 [TBL] [Abstract][Full Text] [Related]
2. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries. Ma R; Shao L; Wu K; Shui M; Wang D; Pan J; Long N; Ren Y; Shu J ACS Appl Mater Interfaces; 2013 Sep; 5(17):8615-27. PubMed ID: 23927499 [TBL] [Abstract][Full Text] [Related]
3. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Huang W; Zhu Z; Wang L; Wang S; Li H; Tao Z; Shi J; Guan L; Chen J Angew Chem Int Ed Engl; 2013 Aug; 52(35):9162-6. PubMed ID: 23825051 [No Abstract] [Full Text] [Related]
4. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Forgie JC; El Khakani S; MacNeil DD; Rochefort D Phys Chem Chem Phys; 2013 May; 15(20):7713-21. PubMed ID: 23595224 [TBL] [Abstract][Full Text] [Related]
6. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries. Shim J; Lee JW; Bae KY; Kim HJ; Yoon WY; Lee JC ChemSusChem; 2017 May; 10(10):2274-2283. PubMed ID: 28374480 [TBL] [Abstract][Full Text] [Related]
7. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
8. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298 [TBL] [Abstract][Full Text] [Related]
9. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264 [TBL] [Abstract][Full Text] [Related]
10. In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium-Ion Batteries by Using Ultrafine Multifiber Probes. Yamanaka T; Nakagawa H; Tsubouchi S; Domi Y; Doi T; Abe T; Ogumi Z ChemSusChem; 2017 Mar; 10(5):855-861. PubMed ID: 27925412 [TBL] [Abstract][Full Text] [Related]
11. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries. Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350 [TBL] [Abstract][Full Text] [Related]
12. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. Rock SE; Wu L; Crain DJ; Krishnan S; Roy D ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452 [TBL] [Abstract][Full Text] [Related]
13. Template-free bottom-up synthesis of yolk-shell vanadium oxide as high performance cathode for lithium ion batteries. Pang H; Cheng P; Yang H; Lu J; Guo CX; Ning G; Li CM Chem Commun (Camb); 2013 Feb; 49(15):1536-8. PubMed ID: 23322132 [TBL] [Abstract][Full Text] [Related]
14. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Lin F; Markus IM; Nordlund D; Weng TC; Asta MD; Xin HL; Doeff MM Nat Commun; 2014 Mar; 5():3529. PubMed ID: 24670975 [TBL] [Abstract][Full Text] [Related]
15. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays. Borkiewicz OJ; Chapman KW; Chupas PJ Phys Chem Chem Phys; 2013 Jun; 15(22):8466-9. PubMed ID: 23598687 [TBL] [Abstract][Full Text] [Related]
16. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559 [TBL] [Abstract][Full Text] [Related]
17. Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries. Hanf L; Diehl M; Kemper LS; Winter M; Nowak S Electrophoresis; 2020 Oct; 41(18-19):1568-1575. PubMed ID: 32640093 [TBL] [Abstract][Full Text] [Related]
18. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Wu H; Zheng G; Liu N; Carney TJ; Yang Y; Cui Y Nano Lett; 2012 Feb; 12(2):904-9. PubMed ID: 22224827 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries. Sun C; Rajasekhara S; Dong Y; Goodenough JB ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744 [TBL] [Abstract][Full Text] [Related]
20. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Fei L; Xu Y; Wu X; Chen G; Li Y; Li B; Deng S; Smirnov S; Fan H; Luo H Nanoscale; 2014 Apr; 6(7):3664-9. PubMed ID: 24567121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]