These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 25690893)

  • 1. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast.
    Lee NC; Larionov V; Kouprina N
    Nucleic Acids Res; 2015 Apr; 43(8):e55. PubMed ID: 25690893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast.
    Kouprina N; Kim JH; Larionov V
    Curr Protoc; 2021 Aug; 1(8):e207. PubMed ID: 34370406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae.
    Kouprina N; Larionov V
    Nat Protoc; 2008; 3(3):371-7. PubMed ID: 18323808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast.
    Kouprina N; Noskov VN; Larionov V
    Nat Protoc; 2020 Mar; 15(3):734-749. PubMed ID: 32005981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System.
    Ruiz E; Talenton V; Dubrana MP; Guesdon G; Lluch-Senar M; Salin F; Sirand-Pugnet P; Arfi Y; Lartigue C
    ACS Synth Biol; 2019 Nov; 8(11):2547-2557. PubMed ID: 31663334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum conditions for selective isolation of genes from complex genomes by transformation-associated recombination cloning.
    Leem SH; Noskov VN; Park JE; Kim SI; Larionov V; Kouprina N
    Nucleic Acids Res; 2003 Mar; 31(6):e29. PubMed ID: 12626728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective isolation of large chromosomal regions by transformation-associated recombination cloning for structural and functional analysis of mammalian genomes.
    Kouprina N; Noskov VN; Larionov V
    Methods Mol Biol; 2006; 349():85-101. PubMed ID: 17071976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
    DiCarlo JE; Norville JE; Mali P; Rios X; Aach J; Church GM
    Nucleic Acids Res; 2013 Apr; 41(7):4336-43. PubMed ID: 23460208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From selective full-length genes isolation by TAR cloning in yeast to their expression from HAC vectors in human cells.
    Kouprina N; Lee NC; Kononenko AV; Samoshkin A; Larionov V
    Methods Mol Biol; 2015; 1227():3-26. PubMed ID: 25239739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast.
    Noskov VN; Kouprina N; Leem SH; Ouspenski I; Barrett JC; Larionov V
    BMC Genomics; 2003 Apr; 4(1):16. PubMed ID: 12720573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective isolation of mammalian genes by TAR cloning.
    Kouprina N; Larionov V
    Curr Protoc Hum Genet; 2006 May; Chapter 5():Unit 5.17. PubMed ID: 18428393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel strategy for analysis of gene homologues and segmental genome duplications.
    Noskov VN; Leem SH; Solomon G; Mullokandov M; Chae JY; Yoon YH; Shin YS; Kouprina N; Larionov V
    J Mol Evol; 2003 Jun; 56(6):702-10. PubMed ID: 12911033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution.
    Kouprina N; Larionov V
    Nat Rev Genet; 2006 Oct; 7(10):805-12. PubMed ID: 16983376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology.
    Kouprina N; Larionov V
    Chromosoma; 2016 Sep; 125(4):621-32. PubMed ID: 27116033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of human chromosome 16- and 5-specific circular YAC/BAC libraries by in vivo recombination in yeast (TAR cloning).
    Kouprina N; Campbell M; Graves J; Campbell E; Meincke L; Tesmer J; Grady DL; Doggett NA; Moyzis RK; Deaven LL; Larionov V
    Genomics; 1998 Oct; 53(1):21-8. PubMed ID: 9787074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the minimal length of sequence homology required for selective gene isolation by TAR cloning.
    Noskov VN; Koriabine M; Solomon G; Randolph M; Barrett JC; Leem SH; Stubbs L; Kouprina N; Larionov V
    Nucleic Acids Res; 2001 Mar; 29(6):E32. PubMed ID: 11239009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing.
    Pinder J; Salsman J; Dellaire G
    Nucleic Acids Res; 2015 Oct; 43(19):9379-92. PubMed ID: 26429972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.