These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25690896)

  • 1. Inferential modeling of 3D chromatin structure.
    Wang S; Xu J; Zeng J
    Nucleic Acids Res; 2015 Apr; 43(8):e54. PubMed ID: 25690896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling.
    Rousseau M; Fraser J; Ferraiuolo MA; Dostie J; Blanchette M
    BMC Bioinformatics; 2011 Oct; 12():414. PubMed ID: 22026390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovering ensembles of chromatin conformations from contact probabilities.
    Meluzzi D; Arya G
    Nucleic Acids Res; 2013 Jan; 41(1):63-75. PubMed ID: 23143266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian inference of spatial organizations of chromosomes.
    Hu M; Deng K; Qin Z; Dixon J; Selvaraj S; Fang J; Ren B; Liu JS
    PLoS Comput Biol; 2013; 9(1):e1002893. PubMed ID: 23382666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looping probabilities in model interphase chromosomes.
    Rosa A; Becker NB; Everaers R
    Biophys J; 2010 Jun; 98(11):2410-9. PubMed ID: 20513384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the Spatial Chromatin Structure Based on a Multiresolution Bead-Chain Model.
    Caudai C; Salerno E; Zoppe M; Tonazzini A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):550-559. PubMed ID: 29994172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes.
    Abbas A; He X; Niu J; Zhou B; Zhu G; Ma T; Song J; Gao J; Zhang MQ; Zeng J
    Nat Commun; 2019 May; 10(1):2049. PubMed ID: 31053705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring 3D chromatin structure using a multiscale approach based on quaternions.
    Caudai C; Salerno E; Zoppè M; Tonazzini A
    BMC Bioinformatics; 2015 Jul; 16():234. PubMed ID: 26220581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations.
    Arbona JM; Herbert S; Fabre E; Zimmer C
    Genome Biol; 2017 May; 18(1):81. PubMed ID: 28468672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical block matrices as efficient representations of chromosome topologies and their application for 3C data integration.
    Shavit Y; Walker BJ; Lio' P
    Bioinformatics; 2016 Apr; 32(8):1121-9. PubMed ID: 26685310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci.
    Buckle A; Brackley CA; Boyle S; Marenduzzo D; Gilbert N
    Mol Cell; 2018 Nov; 72(4):786-797.e11. PubMed ID: 30344096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription.
    Giorgetti L; Galupa R; Nora EP; Piolot T; Lam F; Dekker J; Tiana G; Heard E
    Cell; 2014 May; 157(4):950-63. PubMed ID: 24813616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
    Xu Z; Zhang G; Wu C; Li Y; Hu M
    Bioinformatics; 2016 Sep; 32(17):2692-5. PubMed ID: 27153668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization.
    Williamson I; Berlivet S; Eskeland R; Boyle S; Illingworth RS; Paquette D; Dostie J; Bickmore WA
    Genes Dev; 2014 Dec; 28(24):2778-91. PubMed ID: 25512564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.