These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25691104)
21. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. Furet JP; Firmesse O; Gourmelon M; Bridonneau C; Tap J; Mondot S; Doré J; Corthier G FEMS Microbiol Ecol; 2009 Jun; 68(3):351-62. PubMed ID: 19302550 [TBL] [Abstract][Full Text] [Related]
22. Assay for estimating total bacterial load: relative qPCR normalisation of bacterial load with associated clinical implications. Brukner I; Longtin Y; Oughton M; Forgetta V; Dascal A Diagn Microbiol Infect Dis; 2015 Sep; 83(1):1-6. PubMed ID: 26008123 [TBL] [Abstract][Full Text] [Related]
23. Chronic shedding of Campylobacter species in beef cattle. Inglis GD; Kalischuk LD; Busz HW J Appl Microbiol; 2004; 97(2):410-20. PubMed ID: 15239709 [TBL] [Abstract][Full Text] [Related]
24. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. Dorn-In S; Bassitta R; Schwaiger K; Bauer J; Hölzel CS J Microbiol Methods; 2015 Jun; 113():50-6. PubMed ID: 25863142 [TBL] [Abstract][Full Text] [Related]
25. A high-throughput and quantitative hierarchical oligonucleotide primer extension (HOPE)-based approach to identify sources of faecal contamination in water bodies. Hong PY; Wu JH; Liu WT Environ Microbiol; 2009 Jul; 11(7):1672-81. PubMed ID: 19222540 [TBL] [Abstract][Full Text] [Related]
26. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Okabe S; Okayama N; Savichtcheva O; Ito T Appl Microbiol Biotechnol; 2007 Mar; 74(4):890-901. PubMed ID: 17139508 [TBL] [Abstract][Full Text] [Related]
28. Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Ohashi Y; Sumitani K; Tokunaga M; Ishihara N; Okubo T; Fujisawa T Benef Microbes; 2015; 6(4):451-5. PubMed ID: 25519526 [TBL] [Abstract][Full Text] [Related]
29. Rapid identification and differentiation of agricultural faecal contamination sources using multiplex PCR. Baker-Austin C; Morris J; Lowther JA; Rangdale R; Lees DN Lett Appl Microbiol; 2009 Oct; 49(4):529-32. PubMed ID: 19708886 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR. Duan C; Cui Y; Zhao Y; Zhai J; Zhang B; Zhang K; Sun D; Chen H J Environ Manage; 2016 Oct; 181():193-200. PubMed ID: 27353369 [TBL] [Abstract][Full Text] [Related]
31. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Kabeerdoss J; Devi RS; Mary RR; Ramakrishna BS Br J Nutr; 2012 Sep; 108(6):953-7. PubMed ID: 22182464 [TBL] [Abstract][Full Text] [Related]
32. Development of a real-time quantitative PCR method for detection and quantification of Prevotella copri. Verbrugghe P; Van Aken O; Hållenius F; Nilsson A BMC Microbiol; 2021 Jan; 21(1):23. PubMed ID: 33430782 [TBL] [Abstract][Full Text] [Related]
33. Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces. Zheng G; Yampara-Iquise H; Jones JE; Andrew Carson C J Appl Microbiol; 2009 Feb; 106(2):634-41. PubMed ID: 19200327 [TBL] [Abstract][Full Text] [Related]
34. PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides-Eubacterium rectale group in the human intestinal microbiota. Maukonen J; Mättö J; Satokari R; Söderlund H; Mattila-Sandholm T; Saarela M FEMS Microbiol Ecol; 2006 Dec; 58(3):517-28. PubMed ID: 17117993 [TBL] [Abstract][Full Text] [Related]
35. The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Kwok LY; Guo Z; Zhang J; Wang L; Qiao J; Hou Q; Zheng Y; Zhang H Benef Microbes; 2015; 6(4):405-13. PubMed ID: 25653153 [TBL] [Abstract][Full Text] [Related]
36. Diversity and abundance of the bacterial 16S rRNA gene sequences in forestomach of alpacas (Lama pacos) and sheep (Ovis aries). Pei CX; Liu Q; Dong CS; Li H; Jiang JB; Gao WJ Anaerobe; 2010 Aug; 16(4):426-32. PubMed ID: 20558310 [TBL] [Abstract][Full Text] [Related]
37. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Layton A; McKay L; Williams D; Garrett V; Gentry R; Sayler G Appl Environ Microbiol; 2006 Jun; 72(6):4214-24. PubMed ID: 16751534 [TBL] [Abstract][Full Text] [Related]
38. A PCR marker for detection in surface waters of faecal pollution derived from ducks. Devane ML; Robson B; Nourozi F; Scholes P; Gilpin BJ Water Res; 2007 Aug; 41(16):3553-60. PubMed ID: 17631940 [TBL] [Abstract][Full Text] [Related]
39. Potential Applications of Blautia wexlerae in the Regulation of Host Metabolism. Rui W; Li X; Wang L; Tang X; Yang J Probiotics Antimicrob Proteins; 2024 Oct; 16(5):1866-1874. PubMed ID: 38703323 [TBL] [Abstract][Full Text] [Related]
40. Culture-independent phylogenetic analysis of the faecal flora of the rat. Brooks SP; McAllister M; Sandoz M; Kalmokoff ML Can J Microbiol; 2003 Oct; 49(10):589-601. PubMed ID: 14663493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]