These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 25691354)
1. Application of process analytical technology for monitoring freeze-drying of an amorphous protein formulation: use of complementary tools for real-time product temperature measurements and endpoint detection. Schneid SC; Johnson RE; Lewis LM; Stärtzel P; Gieseler H J Pharm Sci; 2015 May; 104(5):1741-9. PubMed ID: 25691354 [TBL] [Abstract][Full Text] [Related]
2. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations. Awotwe Otoo D; Agarabi C; Khan MA J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part I, product temperature measurement. Tang X; Nail SL; Pikal MJ AAPS PharmSciTech; 2006 Feb; 7(1):E14. PubMed ID: 16584144 [TBL] [Abstract][Full Text] [Related]
4. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Tang XC; Nail SL; Pikal MJ Pharm Res; 2005 Apr; 22(4):685-700. PubMed ID: 15889467 [TBL] [Abstract][Full Text] [Related]
5. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles. Kuu WY; Hardwick LM; Akers MJ Int J Pharm; 2006 Apr; 313(1-2):99-113. PubMed ID: 16513303 [TBL] [Abstract][Full Text] [Related]
6. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization. Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415 [TBL] [Abstract][Full Text] [Related]
7. Fundamentals of freeze-drying. Nail SL; Jiang S; Chongprasert S; Knopp SA Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying. Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826 [TBL] [Abstract][Full Text] [Related]
9. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle. Gieseler H; Kramer T; Pikal MJ J Pharm Sci; 2007 Dec; 96(12):3402-18. PubMed ID: 17853427 [TBL] [Abstract][Full Text] [Related]
10. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature. Bosca S; Barresi AA; Fissore D Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part II measurement of dry-layer resistance. Tang XC; Nail SL; Pikal MJ AAPS PharmSciTech; 2006; 7(4):93. PubMed ID: 17285744 [TBL] [Abstract][Full Text] [Related]
12. Process analytical technologies (PAT) in freeze-drying of parenteral products. Patel SM; Pikal M Pharm Dev Technol; 2009; 14(6):567-87. PubMed ID: 19883247 [TBL] [Abstract][Full Text] [Related]
13. Temperature Measurement by Sublimation Rate as a Process Analytical Technology Tool in Lyophilization. Kawasaki H; Shimanouchi T; Sawada H; Hosomi H; Hamabe Y; Kimura Y J Pharm Sci; 2019 Jul; 108(7):2305-2314. PubMed ID: 30825460 [TBL] [Abstract][Full Text] [Related]
14. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: Part I, product temperature measurement. Tang X; Nail SL; Pikal MJ AAPS PharmSciTech; 2006 Mar; 7(1):E95-E103. PubMed ID: 28290029 [TBL] [Abstract][Full Text] [Related]
16. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying. Goshima H; Do G; Nakagawa K J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489 [TBL] [Abstract][Full Text] [Related]
17. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. Lietta E; Colucci D; Distefano G; Fissore D J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of the secondary drying in freeze-drying of pharmaceuticals. Fissore D; Pisano R; Barresi AA J Pharm Sci; 2011 Feb; 100(2):732-42. PubMed ID: 20799368 [TBL] [Abstract][Full Text] [Related]
19. Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations. Johnson RE; Oldroyd ME; Ahmed SS; Gieseler H; Lewis LM J Pharm Sci; 2010 Jun; 99(6):2863-73. PubMed ID: 19960528 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement. Tang XC; Nail SL; Pikal MJ AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]