BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25691451)

  • 1. Effect of age on the sensitivity of the rat thyroid gland to ionizing radiation.
    Matsuu-Matsuyama M; Shichijo K; Okaichi K; Kurashige T; Kondo H; Miura S; Nakashima M
    J Radiat Res; 2015 May; 56(3):493-501. PubMed ID: 25691451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependent effects on radiation-induced carcinogenesis in the rat thyroid.
    Matsuu-Matsuyama M; Shichijo K; Matsuda K; Fujimoto N; Kondo H; Miura S; Kurashige T; Nagayama Y; Nakashima M
    Sci Rep; 2021 Sep; 11(1):19096. PubMed ID: 34580369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells.
    Yang T; Namba H; Hara T; Takmura N; Nagayama Y; Fukata S; Ishikawa N; Kuma K; Ito K; Yamashita S
    Oncogene; 1997 Apr; 14(13):1511-9. PubMed ID: 9129141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Functional and morphological characterization of rat thyroid gland at remote periods following single high and low dose radiation exposure].
    Nadol'nik LI; Netsetskaia ZV; Kardash NA; Martynchik DI; Kravchuk RI; Basinskiĭ VA; Vinogradov VV
    Radiats Biol Radioecol; 2004; 44(5):535-43. PubMed ID: 15571041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene.
    Lang FF; Yung WK; Raju U; Libunao F; Terry NH; Tofilon PJ
    J Neurosurg; 1998 Jul; 89(1):125-32. PubMed ID: 9647183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and functional changes in neonatally X-irradiated thyroid gland in rats.
    Fujimoto N; Matsuu-Matsuyama M; Nakashima M
    Endocr J; 2020 Feb; 67(2):231-240. PubMed ID: 31748432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive study of p53 transcriptional activity in thymus and spleen of gamma irradiated mouse: high sensitivity of genes involved in the two main apoptotic pathways.
    Alvarez S; Drané P; Meiller A; Bras M; Deguin-Chambon V; Bouvard V; May E
    Int J Radiat Biol; 2006 Nov; 82(11):761-70. PubMed ID: 17148260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The early and late reactions of the thyroid-gonadal link in rats of different age groups to the action of ionizing radiation].
    Mizina TIu; Sitnikova SG
    Radiats Biol Radioecol; 1998; 38(3):393-9. PubMed ID: 9682733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells.
    Namba H; Hara T; Tukazaki T; Migita K; Ishikawa N; Ito K; Nagataki S; Yamashita S
    Cancer Res; 1995 May; 55(10):2075-80. PubMed ID: 7743505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionizing radiation induces a p53-dependent apoptotic mechanism in ARPE-19 cells.
    Jiang YL; Escaño MF; Sasaki R; Fujii S; Kusuhara S; Matsumoto A; Sugimura K; Negi A
    Jpn J Ophthalmol; 2004; 48(2):106-14. PubMed ID: 15064971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tumor suppressor, p53, contributes to radiosensitivity of lung cancer cells by regulating autophagy and apoptosis.
    Cheng G; Kong D; Hou X; Liang B; He M; Liang N; Ma S; Liu X
    Cancer Biother Radiopharm; 2013 Mar; 28(2):153-9. PubMed ID: 23268708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection by polaprezinc against radiation-induced apoptosis in rat jejunal crypt cells.
    Matsuu-Matsuyama M; Shichijo K; Okaichi K; Nakayama T; Nakashima M; Uemura T; Niino D; Sekine I
    J Radiat Res; 2008 Jul; 49(4):341-7. PubMed ID: 18413982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine.
    Matsuu-Matsuyama M; Nakashima M; Shichijo K; Okaichi K; Nakayama T; Sekine I
    Radiat Res; 2010 Jul; 174(1):52-61. PubMed ID: 20681799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High radiosensitivity of germ cells in human male fetus.
    Lambrot R; Coffigny H; Pairault C; Lécureuil C; Frydman R; Habert R; Rouiller-Fabre V
    J Clin Endocrinol Metab; 2007 Jul; 92(7):2632-9. PubMed ID: 17456577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis, necrosis, and autophagy in mouse intestinal damage after 15-Gy whole body irradiation.
    Chen Q; Xia X; Wu S; Wu A; Qi D; Liu W; Cui F; Jiao Y; Zhu W; Gu Y; Gao H; Zhang X; Cao J
    Cell Biochem Funct; 2014 Dec; 32(8):647-56. PubMed ID: 25289565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray analysis of differentially expressed genes in mouse bone marrow tissues after ionizing radiation.
    Dai JM; Sun DC; Lin RX; Yang J; Lou S; Wang SQ
    Int J Radiat Biol; 2006 Jul; 82(7):511-21. PubMed ID: 16882623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-dependent apoptosis on cultured thyroid cells.
    Del Terra E; Francesconi A; Meli A; Ambesi-Impiombato FS
    Phys Med; 2001; 17 Suppl 1():261-3. PubMed ID: 11780614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy regulates X-ray radiation-induced premature senescence through STAT3-Beclin1-p62 pathway in lung adenocarcinoma cells.
    Tian YT; Ma LP; Ding CY; Liu MM; Wang SN; Tian M; Gao L; Liu QJ
    Int J Radiat Biol; 2022; 98(9):1432-1441. PubMed ID: 35426771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation tolerance and fractionation sensitivity of the developing rat cervical spinal cord.
    Ruifrok AC; Kleiboer BJ; van der Kogel AJ
    Int J Radiat Oncol Biol Phys; 1992; 24(3):505-10. PubMed ID: 1399737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiosensitivity, apoptosis and repair of DNA double-strand breaks in radiation-sensitive Chinese hamster ovary cell mutants treated at different dose rates.
    Hu Q; Hill RP
    Radiat Res; 1996 Dec; 146(6):636-45. PubMed ID: 8955713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.