These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 25691523)
1. Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. Rinaldo S; Paiardini A; Stelitano V; Brunotti P; Cervoni L; Fernicola S; Protano C; Vitali M; Cutruzzolà F; Giardina G J Bacteriol; 2015 Apr; 197(8):1525-35. PubMed ID: 25691523 [TBL] [Abstract][Full Text] [Related]
2. C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. Stelitano V; Giardina G; Paiardini A; Castiglione N; Cutruzzolà F; Rinaldo S PLoS One; 2013; 8(9):e74920. PubMed ID: 24066157 [TBL] [Abstract][Full Text] [Related]
3. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE mBio; 2011; 2(5):. PubMed ID: 21990613 [TBL] [Abstract][Full Text] [Related]
4. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Ryan RP; Lucey J; O'Donovan K; McCarthy Y; Yang L; Tolker-Nielsen T; Dow JM Environ Microbiol; 2009 May; 11(5):1126-36. PubMed ID: 19170727 [TBL] [Abstract][Full Text] [Related]
5. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP. Miner KD; Kurtz DM Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892 [TBL] [Abstract][Full Text] [Related]
6. Binding of GTP to BifA is required for the production of Pel-dependent biofilms in Van Loon JC; Whitfield GB; Wong N; O'Neal L; Henrickson A; Demeler B; O'Toole GA; Parsek MR; Howell PL J Bacteriol; 2024 Feb; 206(2):e0033123. PubMed ID: 38197635 [TBL] [Abstract][Full Text] [Related]
7. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Ryan RP; Fouhy Y; Lucey JF; Crossman LC; Spiro S; He YW; Zhang LH; Heeb S; Cámara M; Williams P; Dow JM Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6712-7. PubMed ID: 16611728 [TBL] [Abstract][Full Text] [Related]
8. Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Cohen D; Mechold U; Nevenzal H; Yarmiyhu Y; Randall TE; Bay DC; Rich JD; Parsek MR; Kaever V; Harrison JJ; Banin E Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11359-64. PubMed ID: 26305928 [TBL] [Abstract][Full Text] [Related]
9. Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Galperin MY; Chou SH J Bacteriol; 2022 Apr; 204(4):e0056121. PubMed ID: 34928179 [TBL] [Abstract][Full Text] [Related]
10. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. McKee RW; Kariisa A; Mudrak B; Whitaker C; Tamayo R BMC Microbiol; 2014 Oct; 14():272. PubMed ID: 25343965 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013 [TBL] [Abstract][Full Text] [Related]
12. Insights into Biofilm Dispersal Regulation from the Crystal Structure of the PAS-GGDEF-EAL Region of RbdA from Pseudomonas aeruginosa. Liu C; Liew CW; Wong YH; Tan ST; Poh WH; Manimekalai MSS; Rajan S; Xin L; Liang ZX; Grüber G; Rice SA; Lescar J J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29109186 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Matsuyama BY; Krasteva PV; Baraquet C; Harwood CS; Sondermann H; Navarro MV Proc Natl Acad Sci U S A; 2016 Jan; 113(2):E209-18. PubMed ID: 26712005 [TBL] [Abstract][Full Text] [Related]
14. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. Römling U; Liang ZX; Dow JM J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 28031279 [TBL] [Abstract][Full Text] [Related]
15. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site. Miner KD; Klose KE; Kurtz DM Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166 [TBL] [Abstract][Full Text] [Related]
16. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Sun S; Pandelia ME Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757 [TBL] [Abstract][Full Text] [Related]
18. Insights into the GTP-dependent allosteric control of c-di-GMP hydrolysis from the crystal structure of PA0575 protein from Pseudomonas aeruginosa. Mantoni F; Paiardini A; Brunotti P; D'Angelo C; Cervoni L; Paone A; Cappellacci L; Petrelli R; Ricciutelli M; Leoni L; Rampioni G; Arcovito A; Rinaldo S; Cutruzzolà F; Giardina G FEBS J; 2018 Oct; 285(20):3815-3834. PubMed ID: 30106221 [TBL] [Abstract][Full Text] [Related]
19. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Orr MW; Donaldson GP; Severin GB; Wang J; Sintim HO; Waters CM; Lee VT Proc Natl Acad Sci U S A; 2015 Sep; 112(36):E5048-57. PubMed ID: 26305945 [TBL] [Abstract][Full Text] [Related]
20. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Dow JM; Fouhy Y; Lucey JF; Ryan RP Mol Plant Microbe Interact; 2006 Dec; 19(12):1378-84. PubMed ID: 17153922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]