BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25691570)

  • 1. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order.
    Wongnate T; Ragsdale SW
    J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues .
    Cedervall PE; Dey M; Pearson AR; Ragsdale SW; Wilmot CM
    Biochemistry; 2010 Sep; 49(35):7683-93. PubMed ID: 20707311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of alkyl-nickel adducts generated by reaction of methyl-coenzyme m reductase with brominated acids.
    Dey M; Kunz RC; Lyons DM; Ragsdale SW
    Biochemistry; 2007 Oct; 46(42):11969-78. PubMed ID: 17902704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic studies of methane biogenesis by methyl-coenzyme M reductase: evidence that coenzyme B participates in cleaving the C-S bond of methyl-coenzyme M.
    Horng YC; Becker DF; Ragsdale SW
    Biochemistry; 2001 Oct; 40(43):12875-85. PubMed ID: 11669624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-analogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum.
    Rospert S; Voges M; Berkessel A; Albracht SP; Thauer RK
    Eur J Biochem; 1992 Nov; 210(1):101-7. PubMed ID: 1332856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
    Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK
    J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase.
    Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel-Sulfonate Mode of Substrate Binding for Forward and Reverse Reactions of Methyl-SCoM Reductase Suggest a Radical Mechanism Involving Long-Range Electron Transfer.
    Patwardhan A; Sarangi R; Ginovska B; Raugei S; Ragsdale SW
    J Am Chem Soc; 2021 Apr; 143(14):5481-5496. PubMed ID: 33761259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B.
    Goenrich M; Duin EC; Mahlert F; Thauer RK
    J Biol Inorg Chem; 2005 Jun; 10(4):333-42. PubMed ID: 15846525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyl-coenzyme M reductase from Methanothermobacter marburgensis.
    Duin EC; Prakash D; Brungess C
    Methods Enzymol; 2011; 494():159-87. PubMed ID: 21402215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of organometallic and radical intermediates formed during the reaction of methyl-coenzyme M reductase with bromoethanesulfonate.
    Li X; Telser J; Kunz RC; Hoffman BM; Gerfen G; Ragsdale SW
    Biochemistry; 2010 Aug; 49(32):6866-76. PubMed ID: 20597483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Biological Methane-Forming Reaction: Mechanism Confirmed Through Spectroscopic Characterization of a Key Intermediate.
    Shima S
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13648-13649. PubMed ID: 27571920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation.
    Pelmenschikov V; Siegbahn PE
    J Biol Inorg Chem; 2003 Jul; 8(6):653-62. PubMed ID: 12728361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum.
    Bonacker LG; Baudner S; Mörschel E; Böcher R; Thauer RK
    Eur J Biochem; 1993 Oct; 217(2):587-95. PubMed ID: 8223602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase.
    Kunz RC; Horng YC; Ragsdale SW
    J Biol Chem; 2006 Nov; 281(45):34663-76. PubMed ID: 16966321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of methyl-coenzyme M reductase.
    Ermler U
    Dalton Trans; 2005 Nov; (21):3451-8. PubMed ID: 16234924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase.
    Hinderberger D; Ebner S; Mayr S; Jaun B; Reiher M; Goenrich M; Thauer RK; Harmer J
    J Biol Inorg Chem; 2008 Nov; 13(8):1275-89. PubMed ID: 18712421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase.
    Ebner S; Jaun B; Goenrich M; Thauer RK; Harmer J
    J Am Chem Soc; 2010 Jan; 132(2):567-75. PubMed ID: 20014831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
    Scheller S; Goenrich M; Boecher R; Thauer RK; Jaun B
    Nature; 2010 Jun; 465(7298):606-8. PubMed ID: 20520712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.