These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 25691688)
61. Dietary metabolism, the gut microbiome, and heart failure. Tang WHW; Li DY; Hazen SL Nat Rev Cardiol; 2019 Mar; 16(3):137-154. PubMed ID: 30410105 [TBL] [Abstract][Full Text] [Related]
62. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Luan H; Wang X; Cai Z Mass Spectrom Rev; 2019 Jan; 38(1):22-33. PubMed ID: 29130504 [TBL] [Abstract][Full Text] [Related]
63. Targeting the human microbiome and its metabolite TMAO in cardiovascular prevention and therapy. Dannenberg L; Zikeli D; Benkhoff M; Ahlbrecht S; Kelm M; Levkau B; Polzin A Pharmacol Ther; 2020 Sep; 213():107584. PubMed ID: 32446759 [TBL] [Abstract][Full Text] [Related]
64. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. El Aidy S; Merrifield CA; Derrien M; van Baarlen P; Hooiveld G; Levenez F; Doré J; Dekker J; Holmes E; Claus SP; Reijngoud DJ; Kleerebezem M Gut; 2013 Sep; 62(9):1306-14. PubMed ID: 22722618 [TBL] [Abstract][Full Text] [Related]
65. Gut microbiota: a promising target against cardiometabolic diseases. Warmbrunn MV; Herrema H; Aron-Wisnewsky J; Soeters MR; Van Raalte DH; Nieuwdorp M Expert Rev Endocrinol Metab; 2020 Jan; 15(1):13-27. PubMed ID: 32066294 [No Abstract] [Full Text] [Related]
66. Exploring the Molecular Pathways Behind the Effects of Nutrients and Dietary Polyphenols on Gut Microbiota and Intestinal Permeability: A Perspective on the Potential of Metabolomics and Future Clinical Applications. Peron G; Hidalgo-Liberona N; González-Domínguez R; Garcia-Aloy M; Guglielmetti S; Bernardi S; Kirkup B; Kroon PA; Cherubini A; Riso P; Andrés-Lacueva C J Agric Food Chem; 2020 Feb; 68(7):1780-1789. PubMed ID: 31083905 [TBL] [Abstract][Full Text] [Related]
67. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Karl JP; Margolis LM; Madslien EH; Murphy NE; Castellani JW; Gundersen Y; Hoke AV; Levangie MW; Kumar R; Chakraborty N; Gautam A; Hammamieh R; Martini S; Montain SJ; Pasiakos SM Am J Physiol Gastrointest Liver Physiol; 2017 Jun; 312(6):G559-G571. PubMed ID: 28336545 [TBL] [Abstract][Full Text] [Related]
68. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Moco S; Martin FP; Rezzi S J Proteome Res; 2012 Oct; 11(10):4781-90. PubMed ID: 22905879 [TBL] [Abstract][Full Text] [Related]
69. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Hoyles L; Jiménez-Pranteda ML; Chilloux J; Brial F; Myridakis A; Aranias T; Magnan C; Gibson GR; Sanderson JD; Nicholson JK; Gauguier D; McCartney AL; Dumas ME Microbiome; 2018 Apr; 6(1):73. PubMed ID: 29678198 [TBL] [Abstract][Full Text] [Related]
70. The human microbiome and metabolomics: Current concepts and applications. Daliri EB; Wei S; Oh DH; Lee BH Crit Rev Food Sci Nutr; 2017 Nov; 57(16):3565-3576. PubMed ID: 27767329 [TBL] [Abstract][Full Text] [Related]
71. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. Maier TV; Lucio M; Lee LH; VerBerkmoes NC; Brislawn CJ; Bernhardt J; Lamendella R; McDermott JE; Bergeron N; Heinzmann SS; Morton JT; González A; Ackermann G; Knight R; Riedel K; Krauss RM; Schmitt-Kopplin P; Jansson JK mBio; 2017 Oct; 8(5):. PubMed ID: 29042495 [TBL] [Abstract][Full Text] [Related]
72. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Petriello MC; Hoffman JB; Vsevolozhskaya O; Morris AJ; Hennig B Environ Pollut; 2018 Nov; 242(Pt A):1022-1032. PubMed ID: 30373033 [TBL] [Abstract][Full Text] [Related]
73. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. Gohir W; Kennedy KM; Wallace JG; Saoi M; Bellissimo CJ; Britz-McKibbin P; Petrik JJ; Surette MG; Sloboda DM J Physiol; 2019 Jun; 597(12):3029-3051. PubMed ID: 31081119 [TBL] [Abstract][Full Text] [Related]
75. Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Nagai M; Obata Y; Takahashi D; Hase K Int Immunopharmacol; 2016 Aug; 37():79-86. PubMed ID: 27133028 [TBL] [Abstract][Full Text] [Related]
76. Interaction between gut microbiome and cardiovascular disease. Peng J; Xiao X; Hu M; Zhang X Life Sci; 2018 Dec; 214():153-157. PubMed ID: 30385177 [TBL] [Abstract][Full Text] [Related]
77. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Albenberg LG; Wu GD Gastroenterology; 2014 May; 146(6):1564-72. PubMed ID: 24503132 [TBL] [Abstract][Full Text] [Related]
78. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Fujisaka S; Avila-Pacheco J; Soto M; Kostic A; Dreyfuss JM; Pan H; Ussar S; Altindis E; Li N; Bry L; Clish CB; Kahn CR Cell Rep; 2018 Mar; 22(11):3072-3086. PubMed ID: 29539432 [TBL] [Abstract][Full Text] [Related]
79. Translational research into gut microbiota: new horizons in obesity treatment. Tsukumo DM; Carvalho BM; Carvalho-Filho MA; Saad MJ Arq Bras Endocrinol Metabol; 2009 Mar; 53(2):139-44. PubMed ID: 19466205 [TBL] [Abstract][Full Text] [Related]