These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 25691688)
81. The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Ahmad AF; Dwivedi G; O'Gara F; Caparros-Martin J; Ward NC Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H923-H938. PubMed ID: 31469291 [TBL] [Abstract][Full Text] [Related]
82. Listening to Our Gut: Contribution of Gut Microbiota and Cardiovascular Risk in Diabetes Pathogenesis. Li D; Kirsop J; Tang WH Curr Diab Rep; 2015 Sep; 15(9):63. PubMed ID: 26208694 [TBL] [Abstract][Full Text] [Related]
83. Leptin acts independently of food intake to modulate gut microbial composition in male mice. Rajala MW; Patterson CM; Opp JS; Foltin SK; Young VB; Myers MG Endocrinology; 2014 Mar; 155(3):748-57. PubMed ID: 24424041 [TBL] [Abstract][Full Text] [Related]
84. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Brunkwall L; Orho-Melander M Diabetologia; 2017 Jun; 60(6):943-951. PubMed ID: 28434033 [TBL] [Abstract][Full Text] [Related]
85. Associations between untargeted plasma metabolomic signatures and gut microbiota composition in the Partula V; Deschasaux-Tanguy M; Mondot S; Victor-Bala A; Bouchemal N; Lécuyer L; Bobin-Dubigeon C; Torres MJ; Kesse-Guyot E; Charbit B; Patin E; Assmann KE; Latino-Martel P; Julia C; Galan P; Hercberg S; Quintana-Murci L; Albert ML; Duffy D; Lantz O; Savarin P; Triba MN; Touvier M; Br J Nutr; 2021 Oct; 126(7):982-992. PubMed ID: 33298217 [TBL] [Abstract][Full Text] [Related]
86. The contributory role of gut microbiota in cardiovascular disease. Tang WH; Hazen SL J Clin Invest; 2014 Oct; 124(10):4204-11. PubMed ID: 25271725 [TBL] [Abstract][Full Text] [Related]
87. Correlation of fecal metabolomics and gut microbiota in mice with endometriosis. Ni Z; Sun S; Bi Y; Ding J; Cheng W; Yu J; Zhou L; Li M; Yu C Am J Reprod Immunol; 2020 Dec; 84(6):e13307. PubMed ID: 32681566 [TBL] [Abstract][Full Text] [Related]
88. An Integrated Fecal Microbiome and Metabolomics in T2DM Rats Reveal Antidiabetes Effects from Host-Microbial Metabolic Axis of EtOAc Extract from Shao J; Liu Y; Wang H; Luo Y; Chen L Oxid Med Cell Longev; 2020; 2020():1805418. PubMed ID: 32566075 [TBL] [Abstract][Full Text] [Related]
89. Role of the gut microbiota in type 2 diabetes and related diseases. Yang G; Wei J; Liu P; Zhang Q; Tian Y; Hou G; Meng L; Xin Y; Jiang X Metabolism; 2021 Apr; 117():154712. PubMed ID: 33497712 [TBL] [Abstract][Full Text] [Related]
90. The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Srikantha P; Mohajeri MH Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035684 [TBL] [Abstract][Full Text] [Related]
91. Distinct N and C Cross-Feeding Networks in a Synthetic Mouse Gut Consortium. Pérez Escriva P; Fuhrer T; Sauer U mSystems; 2022 Apr; 7(2):e0148421. PubMed ID: 35357218 [TBL] [Abstract][Full Text] [Related]
92. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Vallianou N; Stratigou T; Christodoulatos GS; Dalamaga M Curr Obes Rep; 2019 Sep; 8(3):317-332. PubMed ID: 31175629 [TBL] [Abstract][Full Text] [Related]
93. [Microbiome, diabetes and heart: a novel link?]. Kappel BA; Lehrke M Herz; 2019 May; 44(3):223-230. PubMed ID: 30847506 [TBL] [Abstract][Full Text] [Related]
94. Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Moludi J; Maleki V; Jafari-Vayghyan H; Vaghef-Mehrabany E; Alizadeh M Clin Exp Pharmacol Physiol; 2020 Jun; 47(6):927-939. PubMed ID: 31894861 [TBL] [Abstract][Full Text] [Related]
95. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Tousoulis D; Guzik T; Padro T; Duncker DJ; De Luca G; Eringa E; Vavlukis M; Antonopoulos AS; Katsimichas T; Cenko E; Djordjevic-Dikic A; Fleming I; Manfrini O; Trifunovic D; Antoniades C; Crea F Cardiovasc Res; 2022 Dec; 118(16):3171-3182. PubMed ID: 35420126 [TBL] [Abstract][Full Text] [Related]
96. The interaction between microbiome and host central nervous system: the gut-brain axis as a potential new therapeutic target in the treatment of obesity and cardiometabolic disease. Wijdeveld M; Nieuwdorp M; IJzerman R Expert Opin Ther Targets; 2020 Jul; 24(7):639-653. PubMed ID: 32441559 [TBL] [Abstract][Full Text] [Related]
97. METABOLIC DYSBIOSIS OF THE GUT MICROBIOTA AND ITS BIOMARKERS. Sitkin SI; Tkachenko EI; Vakhitov TY Eksp Klin Gastroenterol; 2016 Jul; 12(12):6-29. PubMed ID: 29889418 [TBL] [Abstract][Full Text] [Related]
98. Gut and obesity/metabolic disease: Focus on microbiota metabolites. Lin K; Zhu L; Yang L MedComm (2020); 2022 Sep; 3(3):e171. PubMed ID: 36092861 [TBL] [Abstract][Full Text] [Related]
99. Sex, gut microbiome, and cardiovascular disease risk. Razavi AC; Potts KS; Kelly TN; Bazzano LA Biol Sex Differ; 2019 Jun; 10(1):29. PubMed ID: 31182162 [TBL] [Abstract][Full Text] [Related]
100. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Brown JM; Hazen SL Annu Rev Med; 2015; 66():343-59. PubMed ID: 25587655 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]