BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2569178)

  • 1. Relationship between cardiovascular neurones and descending antinociceptive pathways in the rostral ventrolateral medulla of the cat.
    Siddall PJ; Dampney RAL
    Pain; 1989 Jun; 37(3):347-355. PubMed ID: 2569178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the influence of rostral and caudal raphe neurons on the adrenal secretion of catecholamines and on the release of adrenocorticotropin in the cat.
    Bereiter DA; Gann DS
    Pain; 1990 Jul; 42(1):81-91. PubMed ID: 1978277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibitory effect of the ventrolateral periaqueductal grey matter on neurones in the rostral ventrolateral medulla involves a relay in the medullary raphe nuclei.
    Wang WH; Lovick TA
    Exp Brain Res; 1993; 94(2):295-300. PubMed ID: 8359247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleus raphe pallidus participates in midbrain-medullary cardiovascular sympathoinhibition during electroacupuncture.
    Li P; Tjen-A-Looi SC; Longhurst JC
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1369-76. PubMed ID: 20720173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending antinociceptive pathway from the rostral ventrolateral medulla: a correlative anatomical and physiological study.
    Siddall PJ; Polson JW; Dampney RA
    Brain Res; 1994 May; 645(1-2):61-8. PubMed ID: 7914818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the nucleus raphe obscurus in the inhibition of rostral ventrolateral medullary neurones induced by stimulation in the ventrolateral periaqueductal grey matter of the rabbit.
    Zhang YM; Li P; Lovick TA
    Neurosci Lett; 1994 Aug; 176(2):231-4. PubMed ID: 7830953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat.
    Dampney RA; McAllen RM
    J Physiol; 1988 Jan; 395():41-56. PubMed ID: 2900889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses.
    Randich A; Thurston CL; Ludwig PS; Robertson JD; Rasmussen C
    J Neurophysiol; 1992 Oct; 68(4):1027-45. PubMed ID: 1432065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of non-NMDA and NMDA receptors in glutamate-induced pressor or depressor responses of the pons and medulla.
    Chen SY; Wu WC; Tseng CJ; Kuo JS; Chai CY
    Clin Exp Pharmacol Physiol; 1997 Jan; 24(1):46-56. PubMed ID: 9043805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-loop pathways in cardiovascular electroacupuncture responses.
    Li P; Tjen-A-Looi SC; Guo ZL; Fu LW; Longhurst JC
    J Appl Physiol (1985); 2009 Feb; 106(2):620-30. PubMed ID: 19074569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midbrain vlPAG inhibits rVLM cardiovascular sympathoexcitatory responses during electroacupuncture.
    Tjen-A-Looi SC; Li P; Longhurst JC
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2543-53. PubMed ID: 16428348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat.
    Snowball RK; Dampney RA; Lumb BM
    Exp Physiol; 1997 May; 82(3):485-500. PubMed ID: 9179568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in blood pressure during isometric contractions to fatigue in the cat after brain stem lesions: effects of clonidine.
    Williams CA; Roberts JR; Freels DB
    Cardiovasc Res; 1990 Oct; 24(10):821-33. PubMed ID: 2085837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus.
    Allen AM; Dampney RA; Mendelsohn FA
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1011-7. PubMed ID: 2903678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla.
    Morgan MM; Heinricher MM; Fields HL
    Neuroscience; 1992; 47(4):863-71. PubMed ID: 1579215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla.
    Aimone LD; Gebhart GF
    J Neurosci; 1986 Jun; 6(6):1803-13. PubMed ID: 2872283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medullary raphe neurones and baroreceptor modulation of the respiratory motor pattern in the cat.
    Lindsey BG; Arata A; Morris KF; Hernandez YM; Shannon R
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):863-82. PubMed ID: 9769428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasomotor control by subretrofacial neurones in the rostral ventrolateral medulla.
    Dampney RA; Goodchild AK; McAllen RM
    Can J Physiol Pharmacol; 1987 Aug; 65(8):1572-9. PubMed ID: 3319108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.