These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25691831)
1. Efficient implementation of the pair atomic resolution of the identity approximation for exact exchange for hybrid and range- separated density functionals. Manzer SF; Epifanovsky E; Head-Gordon M J Chem Theory Comput; 2015 Feb; 11(2):518-27. PubMed ID: 25691831 [TBL] [Abstract][Full Text] [Related]
2. Faster Exact Exchange for Solids via occ-RI-K: Application to Combinatorially Optimized Range-Separated Hybrid Functionals for Simple Solids with Pseudopotentials Near the Basis Set Limit. Lee J; Rettig A; Feng X; Epifanovsky E; Head-Gordon M J Chem Theory Comput; 2022 Dec; 18(12):7336-7349. PubMed ID: 36459992 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Three Efficient Approximate Exact-Exchange Algorithms: The Chain-of-Spheres Algorithm, Pair-Atomic Resolution-of-the-Identity Method, and Auxiliary Density Matrix Method. Rebolini E; Izsák R; Reine SS; Helgaker T; Pedersen TB J Chem Theory Comput; 2016 Aug; 12(8):3514-22. PubMed ID: 27224306 [TBL] [Abstract][Full Text] [Related]
4. Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm. Manzer S; Horn PR; Mardirossian N; Head-Gordon M J Chem Phys; 2015 Jul; 143(2):024113. PubMed ID: 26178096 [TBL] [Abstract][Full Text] [Related]
5. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. Petrenko T; Kossmann S; Neese F J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101 [TBL] [Abstract][Full Text] [Related]
6. Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller-Plesset Perturbation Theory. Lee J; Lin L; Head-Gordon M J Chem Theory Comput; 2020 Jan; 16(1):243-263. PubMed ID: 31794667 [TBL] [Abstract][Full Text] [Related]
8. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
9. Efficient Semi-numerical Implementation of Global and Local Hybrid Functionals for Time-Dependent Density Functional Theory. Maier TM; Bahmann H; Kaupp M J Chem Theory Comput; 2015 Sep; 11(9):4226-37. PubMed ID: 26575918 [TBL] [Abstract][Full Text] [Related]
10. Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units. Laqua H; Dietschreit JCB; Kussmann J; Ochsenfeld C J Chem Theory Comput; 2022 Oct; 18(10):6010-6020. PubMed ID: 36136665 [TBL] [Abstract][Full Text] [Related]
11. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. Shao Y; Mei Y; Sundholm D; Kaila VRI J Chem Theory Comput; 2020 Jan; 16(1):587-600. PubMed ID: 31815476 [TBL] [Abstract][Full Text] [Related]
12. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Kozłowska J; Schwilk M; Roztoczyńska A; Bartkowiak W Phys Chem Chem Phys; 2018 Nov; 20(46):29374-29388. PubMed ID: 30451255 [TBL] [Abstract][Full Text] [Related]