These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25691833)

  • 21. Multilevel summation for dispersion: a linear-time algorithm for r(-6) potentials.
    Tameling D; Springer P; Bientinesi P; Ismail AE
    J Chem Phys; 2014 Jan; 140(2):024105. PubMed ID: 24437863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method.
    de Souza ON; Ornstein RL
    Biophys J; 1997 Jun; 72(6):2395-7. PubMed ID: 9168016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.
    Nishizawa H; Okumura H
    J Comput Chem; 2016 Dec; 37(31):2701-2711. PubMed ID: 27718264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient algorithm for multipole energies and derivatives based on spherical harmonics and extensions to particle mesh Ewald.
    Simmonett AC; Pickard FC; Schaefer HF; Brooks BR
    J Chem Phys; 2014 May; 140(18):184101. PubMed ID: 24832247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Periodic Coulomb Tree Method: An Alternative to Parallel Particle Mesh Ewald.
    Boateng HA
    J Chem Theory Comput; 2020 Jan; 16(1):7-17. PubMed ID: 31747267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulations of charged and neutral lipid bilayers: treatment of electrostatic interactions.
    Róg T; Murzyn K; Pasenkiewicz-Gierula M
    Acta Biochim Pol; 2003; 50(3):789-98. PubMed ID: 14515159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.
    Amisaki T; Toyoda S; Miyagawa H; Kitamura K
    J Comput Chem; 2003 Apr; 24(5):582-92. PubMed ID: 12632472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multipolar Ewald methods, 1: theory, accuracy, and performance.
    Giese TJ; Panteva MT; Chen H; York DM
    J Chem Theory Comput; 2015 Feb; 11(2):436-50. PubMed ID: 25691829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force field dependence of phospholipid headgroup and acyl chain properties: comparative molecular dynamics simulations of DMPC bilayers.
    Prakash P; Sankararamakrishnan R
    J Comput Chem; 2010 Jan; 31(2):266-77. PubMed ID: 19475632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Midpoint cell method for hybrid (MPI+OpenMP) parallelization of molecular dynamics simulations.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2014 May; 35(14):1064-72. PubMed ID: 24659253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acceleration of Ab Initio QM/MM Calculations under Periodic Boundary Conditions by Multiscale and Multiple Time Step Approaches.
    Nam K
    J Chem Theory Comput; 2014 Oct; 10(10):4175-83. PubMed ID: 26588116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of different treatments of long-range interactions and sampling conditions in molecular dynamic simulations of rhodopsin embedded in a dipalmitoyl phosphatidylcholine bilayer.
    Cordomí A; Edholm O; Perez JJ
    J Comput Chem; 2007 Apr; 28(6):1017-30. PubMed ID: 17269123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of long-range electrostatic forces on simulated protein folding kinetics.
    Robertson A; Luttmann E; Pande VS
    J Comput Chem; 2008 Apr; 29(5):694-700. PubMed ID: 17849394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fragment-based quantum mechanical methods for periodic systems with Ewald summation and mean image charge convention for long-range electrostatic interactions.
    Zhang P; Truhlar DG; Gao J
    Phys Chem Chem Phys; 2012 Jun; 14(21):7821-9. PubMed ID: 22552612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The polarizable point dipoles method with electrostatic damping: implementation on a model system.
    Sala J; Guàrdia E; Masia M
    J Chem Phys; 2010 Dec; 133(23):234101. PubMed ID: 21186852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free Energy Landscapes of Alanine Dipeptide in Explicit Water Reproduced by the Force-Switching Wolf Method.
    Yonezawa Y; Fukuda I; Kamiya N; Shimoyama H; Nakamura H
    J Chem Theory Comput; 2011 May; 7(5):1484-93. PubMed ID: 26610139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries.
    Tyagi S; Süzen M; Sega M; Barbosa M; Kantorovich SS; Holm C
    J Chem Phys; 2010 Apr; 132(15):154112. PubMed ID: 20423173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations.
    Fang D; Duke RE; Cisneros GA
    J Chem Phys; 2015 Jul; 143(4):044103. PubMed ID: 26233103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.