These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 25691834)
21. Coarse-grained force field: general folding theory. Liwo A; He Y; Scheraga HA Phys Chem Chem Phys; 2011 Oct; 13(38):16890-901. PubMed ID: 21643583 [TBL] [Abstract][Full Text] [Related]
22. Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. Khalili M; Liwo A; Rakowski F; Grochowski P; Scheraga HA J Phys Chem B; 2005 Jul; 109(28):13785-97. PubMed ID: 16852727 [TBL] [Abstract][Full Text] [Related]
23. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11. Krupa P; Mozolewska MA; Wiśniewska M; Yin Y; He Y; Sieradzan AK; Ganzynkowicz R; Lipska AG; Karczyńska A; Ślusarz M; Ślusarz R; Giełdoń A; Czaplewski C; Jagieła D; Zaborowski B; Scheraga HA; Liwo A Bioinformatics; 2016 Nov; 32(21):3270-3278. PubMed ID: 27378298 [TBL] [Abstract][Full Text] [Related]
24. Introduction of Phosphorylated Residues into the UNRES Coarse-Grained Model: Toward Modeling of Signaling Processes. Sieradzan AK; Bogunia M; Mech P; Ganzynkowicz R; Giełdoń A; Liwo A; Makowski M J Phys Chem B; 2019 Jul; 123(27):5721-5729. PubMed ID: 31194908 [TBL] [Abstract][Full Text] [Related]
25. Toward Consistent Physics-Based Modeling of Local Backbone Structures and Chirality Change of Proteins in Coarse-Grained Approaches. Lipska AG; Sieradzan AK; Atmaca S; Czaplewski C; Liwo A J Phys Chem Lett; 2023 Nov; 14(44):9824-9833. PubMed ID: 37889895 [TBL] [Abstract][Full Text] [Related]
26. Determination of effective potentials for the stretching of C(α) ⋯ C(α) virtual bonds in polypeptide chains for coarse-grained simulations of proteins from ab initio energy surfaces of N-methylacetamide and N-acetylpyrrolidine. Sieradzan AK; Scheraga HA; Liwo A J Chem Theory Comput; 2012 Apr; 8(4):1334-1343. PubMed ID: 23087598 [TBL] [Abstract][Full Text] [Related]
27. Modeling the Structure, Dynamics, and Transformations of Proteins with the UNRES Force Field. Sieradzan AK; Czaplewski C; Krupa P; Mozolewska MA; Karczyńska AS; Lipska AG; Lubecka EA; Gołaś E; Wirecki T; Makowski M; Ołdziej S; Liwo A Methods Mol Biol; 2022; 2376():399-416. PubMed ID: 34845623 [TBL] [Abstract][Full Text] [Related]
28. Use of Restraints from Consensus Fragments of Multiple Server Models To Enhance Protein-Structure Prediction Capability of the UNRES Force Field. Mozolewska MA; Krupa P; Zaborowski B; Liwo A; Lee J; Joo K; Czaplewski C J Chem Inf Model; 2016 Nov; 56(11):2263-2279. PubMed ID: 27749055 [TBL] [Abstract][Full Text] [Related]
29. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field. Shen H; Czaplewski C; Liwo A; Scheraga HA J Chem Theory Comput; 2008 Aug; 4(8):1386-1400. PubMed ID: 20011673 [TBL] [Abstract][Full Text] [Related]
30. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics. Czaplewski C; Karczynska A; Sieradzan AK; Liwo A Nucleic Acids Res; 2018 Jul; 46(W1):W304-W309. PubMed ID: 29718313 [TBL] [Abstract][Full Text] [Related]
31. Comparison between molecular dynamic based and knowledge based potentials for protein side chains. Betancourt MR J Comput Biol; 2010 Jul; 17(7):943-52. PubMed ID: 20632873 [TBL] [Abstract][Full Text] [Related]
32. Prediction of Aggregation of Biologically-Active Peptides with the UNRES Coarse-Grained Model. Biskupek I; Czaplewski C; Sawicka J; Iłowska E; Dzierżyńska M; Rodziewicz-Motowidło S; Liwo A Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009034 [TBL] [Abstract][Full Text] [Related]
34. Extension of the UNRES Coarse-Grained Force Field to Membrane Proteins in the Lipid Bilayer. Ziȩba K; Ślusarz M; Ślusarz R; Liwo A; Czaplewski C; Sieradzan AK J Phys Chem B; 2019 Sep; 123(37):7829-7839. PubMed ID: 31454484 [TBL] [Abstract][Full Text] [Related]
35. Development of a new physics-based internal coordinate mechanics force field and its application to protein loop modeling. Arnautova YA; Abagyan RA; Totrov M Proteins; 2011 Feb; 79(2):477-98. PubMed ID: 21069716 [TBL] [Abstract][Full Text] [Related]
36. Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method. Kaźmierkiewicz R; Liwo A; Scheraga HA J Comput Chem; 2002 May; 23(7):715-23. PubMed ID: 11948589 [TBL] [Abstract][Full Text] [Related]
37. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins. Manikandan K; Ramakumar S Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129 [TBL] [Abstract][Full Text] [Related]
38. Variability of the canonical loop conformations in serine proteinases inhibitors and other proteins. Apostoluk W; Otlewski J Proteins; 1998 Sep; 32(4):459-74. PubMed ID: 9726416 [TBL] [Abstract][Full Text] [Related]
39. Rotamer strain energy in protein helices - quantification of a major force opposing protein folding. Penel S; Doig AJ J Mol Biol; 2001 Jan; 305(4):961-8. PubMed ID: 11162106 [TBL] [Abstract][Full Text] [Related]
40. Full cyclic coordinate descent: solving the protein loop closure problem in Calpha space. Boomsma W; Hamelryck T BMC Bioinformatics; 2005 Jun; 6():159. PubMed ID: 15985178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]