These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25691957)

  • 1. Challenging the paradigm of nitrogen cycling: no evidence of in situ resource partitioning by coexisting plant species in grasslands of contrasting fertility.
    Wilkinson A; Hill PW; Vaieretti MV; Farrar JF; Jones DL; Bardgett RD
    Ecol Evol; 2015 Jan; 5(2):275-87. PubMed ID: 25691957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferences for different nitrogen forms by coexisting plant species and soil microbes.
    Harrison KA; Bol R; Bardgett RD
    Ecology; 2007 Apr; 88(4):989-99. PubMed ID: 17536714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest.
    Andersen KM; Mayor JR; Turner BL
    Ecology; 2017 May; 98(5):1388-1398. PubMed ID: 28263365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments.
    Barry KE; van Ruijven J; Mommer L; Bai Y; Beierkuhnlein C; Buchmann N; de Kroon H; Ebeling A; Eisenhauer N; Guimarães-Steinicke C; Hildebrandt A; Isbell F; Milcu A; Neßhöver C; Reich PB; Roscher C; Sauheitl L; Scherer-Lorenzen M; Schmid B; Tilman D; von Felten S; Weigelt A
    Ecology; 2020 Jan; 101(1):e02905. PubMed ID: 31560129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands.
    Ceulemans T; Bodé S; Bollyn J; Harpole S; Coorevits K; Peeters G; Van Acker K; Smolders E; Boeckx P; Honnay O
    Nat Plants; 2017 Jan; 3():16224. PubMed ID: 28134925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural abundance of
    Wang R; Peñuelas J; Li T; Liu H; Wu H; Zhang Y; Sardans J; Jiang Y
    Ecology; 2021 Jun; 102(6):e03348. PubMed ID: 33755986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands.
    Frank DA; Groffman PM; Evans RD; Tracy BF
    Oecologia; 2000 Apr; 123(1):116-121. PubMed ID: 28308736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant composition change mediates climate drought, nitrogen addition, and grazing effects on soil net nitrogen mineralization in a semi-arid grassland in North China.
    Lv P; Sun S; Li Y; Zhao S; Zhang J; Hu Y; Yue P; Zuo X
    Sci Total Environ; 2024 Jan; 908():168282. PubMed ID: 37923269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled ((13)C, (15)N) glycine to test for direct uptake by dominant grasses.
    Streeter TC; Bol R; Bardgett RD
    Rapid Commun Mass Spectrom; 2000; 14(15):1351-5. PubMed ID: 10920354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular plant
    Michelsen A; Quarmby C; Sleep D; Jonasson S
    Oecologia; 1998 Jul; 115(3):406-418. PubMed ID: 28308434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen acquisition by plants and microorganisms in a temperate grassland.
    Liu Q; Qiao N; Xu X; Xin X; Han JY; Tian Y; Ouyang H; Kuzyakov Y
    Sci Rep; 2016 Mar; 6():22642. PubMed ID: 26961252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do grassland plant communities profit from N partitioning by soil depth?
    Von Felten S; Niklaus PA; Scherer-Lorenzen M; Hector A; Buchmann N
    Ecology; 2012 Nov; 93(11):2386-96. PubMed ID: 23236910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential uptake of soil nitrogen forms by grassland plant species.
    Weigelt A; Bol R; Bardgett RD
    Oecologia; 2005 Feb; 142(4):627-35. PubMed ID: 15549402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic study of plant and microbial controls over R* for nitrogen in an annual grassland.
    Yelenik SG; Colman BP; Levine JM; HilleRisLambers J
    PLoS One; 2014; 9(8):e106059. PubMed ID: 25170943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.
    Risch AC; Schotz M; Vandegehuchte ML; Van Der Putten WH; Duyts H; Raschein U; Gwiazdowicz DJ; Busse MD; Page-dumroese DS; Zimmermann S
    Ecology; 2015 Dec; 96(12):3312-22. PubMed ID: 26909436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant diversity influenced gross nitrogen mineralization, microbial ammonium consumption and gross inorganic N immobilization in a grassland experiment.
    Lama S; Velescu A; Leimer S; Weigelt A; Chen H; Eisenhauer N; Scheu S; Oelmann Y; Wilcke W
    Oecologia; 2020 Jul; 193(3):731-748. PubMed ID: 32737568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness.
    von Felten S; Hector A; Buchmann N; Niklaus PA; Schmid B; Scherer-Lorenzen M
    Ecology; 2009 May; 90(5):1389-99. PubMed ID: 19537558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive management promotes plant and microbial nitrogen retention in temperate grassland.
    de Vries FT; Bloem J; Quirk H; Stevens CJ; Bol R; Bardgett RD
    PLoS One; 2012; 7(12):e51201. PubMed ID: 23227252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid uptake by temperate tree species characteristic of low- and high-fertility habitats.
    Scott EE; Rothstein DE
    Oecologia; 2011 Oct; 167(2):547-57. PubMed ID: 21553264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.