BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 25692234)

  • 1. The role of microRNAs in osteoclasts and osteoporosis.
    Tang P; Xiong Q; Ge W; Zhang L
    RNA Biol; 2014; 11(11):1355-63. PubMed ID: 25692234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC.
    Guo L; Chen K; Yuan J; Huang P; Xu X; Li C; Qian N; Qi J; Shao Z; Deng L; He C; Xu J
    J Cell Physiol; 2018 Jan; 234(1):581-594. PubMed ID: 30272823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B.
    Cheng P; Chen C; He HB; Hu R; Zhou HD; Xie H; Zhu W; Dai RC; Wu XP; Liao EY; Luo XH
    J Bone Miner Res; 2013 May; 28(5):1180-90. PubMed ID: 23225151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration.
    Franceschetti T; Kessler CB; Lee SK; Delany AM
    J Biol Chem; 2013 Nov; 288(46):33347-60. PubMed ID: 24085298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of oncogenes and tumor-suppressor genes in osteoclastogenesis (Review).
    Minami A; Ogino M; Nakano N; Ichimura M; Nakanishi A; Murai T; Kitagishi Y; Matsuda S
    Int J Mol Med; 2017 Feb; 39(2):261-267. PubMed ID: 28075460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts.
    Takeshita S; Kaji K; Kudo A
    J Bone Miner Res; 2000 Aug; 15(8):1477-88. PubMed ID: 10934646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways.
    Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J
    J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue.
    Hattersley G; Chambers TJ
    J Cell Physiol; 1990 Jan; 142(1):201-9. PubMed ID: 2153687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts.
    Lean JM; Murphy C; Fuller K; Chambers TJ
    J Cell Biochem; 2002; 87(4):386-93. PubMed ID: 12397598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression.
    Ma Y; Shan Z; Ma J; Wang Q; Chu J; Xu P; Qin A; Fan S
    Mol Med Rep; 2016 Mar; 13(3):2273-80. PubMed ID: 26783047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired micro-RNA pathways diminish osteoclast differentiation and function.
    Sugatani T; Hruska KA
    J Biol Chem; 2009 Feb; 284(7):4667-78. PubMed ID: 19059913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3).
    Liu T; Qin AP; Liao B; Shao HG; Guo LJ; Xie GQ; Yang L; Jiang TJ
    Bone; 2014 Oct; 67():156-65. PubMed ID: 25019593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation.
    Quinn JM; Horwood NJ; Elliott J; Gillespie MT; Martin TJ
    J Bone Miner Res; 2000 Aug; 15(8):1459-66. PubMed ID: 10934644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling.
    Menéndez-Gutiérrez MP; Rőszer T; Fuentes L; Núñez V; Escolano A; Redondo JM; De Clerck N; Metzger D; Valledor AF; Ricote M
    J Clin Invest; 2015 Feb; 125(2):809-23. PubMed ID: 25574839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BSP and RANKL induce osteoclastogenesis and bone resorption synergistically.
    Valverde P; Tu Q; Chen J
    J Bone Miner Res; 2005 Sep; 20(9):1669-79. PubMed ID: 16059638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extract of Magnoliae Flos inhibits ovariectomy-induced osteoporosis by blocking osteoclastogenesis and reducing osteoclast-mediated bone resorption.
    Jun AY; Kim HJ; Park KK; Son KH; Lee DH; Woo MH; Kim YS; Lee SK; Chung WY
    Fitoterapia; 2012 Dec; 83(8):1523-31. PubMed ID: 22981503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity.
    Yip KH; Zheng MH; Feng HT; Steer JH; Joyce DA; Xu J
    J Bone Miner Res; 2004 Nov; 19(11):1905-16. PubMed ID: 15476591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.
    Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH
    Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis.
    Ji X; Chen X; Yu X
    Int J Mol Sci; 2016 Mar; 17(3):349. PubMed ID: 27005616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.