These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 25692327)
1. Surface-engineered graphene navigate divergent biological outcomes toward macrophages. Luo N; Ni D; Yue H; Wei W; Ma G ACS Appl Mater Interfaces; 2015 Mar; 7(9):5239-47. PubMed ID: 25692327 [TBL] [Abstract][Full Text] [Related]
2. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Li Y; Feng L; Shi X; Wang X; Yang Y; Yang K; Liu T; Yang G; Liu Z Small; 2014 Apr; 10(8):1544-54. PubMed ID: 24376215 [TBL] [Abstract][Full Text] [Related]
3. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: A comparative in vitro study. Reshma SC; Syama S; Mohanan PV Colloids Surf B Biointerfaces; 2016 Apr; 140():104-116. PubMed ID: 26741270 [TBL] [Abstract][Full Text] [Related]
4. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Chatterjee N; Eom HJ; Choi J Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078 [TBL] [Abstract][Full Text] [Related]
5. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Chen J; Liu H; Zhao C; Qin G; Xi G; Li T; Wang X; Chen T Biomaterials; 2014 Jun; 35(18):4986-95. PubMed ID: 24656608 [TBL] [Abstract][Full Text] [Related]
6. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Luo N; Weber JK; Wang S; Luan B; Yue H; Xi X; Du J; Yang Z; Wei W; Zhou R; Ma G Nat Commun; 2017 Feb; 8():14537. PubMed ID: 28233871 [TBL] [Abstract][Full Text] [Related]
7. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Li Y; Liu Y; Fu Y; Wei T; Le Guyader L; Gao G; Liu RS; Chang YZ; Chen C Biomaterials; 2012 Jan; 33(2):402-11. PubMed ID: 22019121 [TBL] [Abstract][Full Text] [Related]
8. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Feng L; Yang X; Shi X; Tan X; Peng R; Wang J; Liu Z Small; 2013 Jun; 9(11):1989-97. PubMed ID: 23292791 [TBL] [Abstract][Full Text] [Related]
9. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821 [TBL] [Abstract][Full Text] [Related]
10. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1. Lammel T; Navas JM Aquat Toxicol; 2014 May; 150():55-65. PubMed ID: 24642293 [TBL] [Abstract][Full Text] [Related]
11. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Feng L; Li K; Shi X; Gao M; Liu J; Liu Z Adv Healthc Mater; 2014 Aug; 3(8):1261-71. PubMed ID: 24652715 [TBL] [Abstract][Full Text] [Related]
12. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation. Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010 [TBL] [Abstract][Full Text] [Related]
13. Polyethylene Glycol-Engrafted Graphene Oxide as Biocompatible Materials for Peptide Nucleic Acid Delivery into Cells. Baek A; Baek YM; Kim HM; Jun BH; Kim DE Bioconjug Chem; 2018 Feb; 29(2):528-537. PubMed ID: 29376329 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages. Wang B; Su X; Liang J; Yang L; Hu Q; Shan X; Wan J; Hu Z Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():514-522. PubMed ID: 29853120 [TBL] [Abstract][Full Text] [Related]
15. Comparative in vitro study of single and four layer graphene oxide nanoflakes - Cytotoxicity and cellular uptake. Peruzynska M; Cendrowski K; Barylak M; Tkacz M; Piotrowska K; Kurzawski M; Mijowska E; Drozdzik M Toxicol In Vitro; 2017 Jun; 41():205-213. PubMed ID: 28323107 [TBL] [Abstract][Full Text] [Related]
16. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Wen H; Dong C; Dong H; Shen A; Xia W; Cai X; Song Y; Li X; Li Y; Shi D Small; 2012 Mar; 8(5):760-9. PubMed ID: 22228696 [TBL] [Abstract][Full Text] [Related]
17. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. Yang K; Wan J; Zhang S; Zhang Y; Lee ST; Liu Z ACS Nano; 2011 Jan; 5(1):516-22. PubMed ID: 21162527 [TBL] [Abstract][Full Text] [Related]
18. Redox-responsive biodegradable PEGylated nanographene oxide for efficiently chemo-photothermal therapy: a comparative study with non-biodegradable PEGylated nanographene oxide. Xiong H; Guo Z; Zhang W; Zhong H; Liu S; Ji Y J Photochem Photobiol B; 2014 Sep; 138():191-201. PubMed ID: 24976623 [TBL] [Abstract][Full Text] [Related]
19. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. Mu Q; Su G; Li L; Gilbertson BO; Yu LH; Zhang Q; Sun YP; Yan B ACS Appl Mater Interfaces; 2012 Apr; 4(4):2259-66. PubMed ID: 22409495 [TBL] [Abstract][Full Text] [Related]
20. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles. Wu W; Yan L; Chen S; Li Q; Gu Z; Xu H; Yin ZQ Nanotoxicology; 2018 Oct; 12(8):819-835. PubMed ID: 29888639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]