BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25692327)

  • 1. Surface-engineered graphene navigate divergent biological outcomes toward macrophages.
    Luo N; Ni D; Yue H; Wei W; Ma G
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5239-47. PubMed ID: 25692327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene.
    Li Y; Feng L; Shi X; Wang X; Yang Y; Yang K; Liu T; Yang G; Liu Z
    Small; 2014 Apr; 10(8):1544-54. PubMed ID: 24376215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: A comparative in vitro study.
    Reshma SC; Syama S; Mohanan PV
    Colloids Surf B Biointerfaces; 2016 Apr; 140():104-116. PubMed ID: 26741270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systems toxicology approach to the surface functionality control of graphene-cell interactions.
    Chatterjee N; Eom HJ; Choi J
    Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery.
    Chen J; Liu H; Zhao C; Qin G; Xi G; Li T; Wang X; Chen T
    Biomaterials; 2014 Jun; 35(18):4986-95. PubMed ID: 24656608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEGylated graphene oxide elicits strong immunological responses despite surface passivation.
    Luo N; Weber JK; Wang S; Luan B; Yue H; Xi X; Du J; Yang Z; Wei W; Zhou R; Ma G
    Nat Commun; 2017 Feb; 8():14537. PubMed ID: 28233871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways.
    Li Y; Liu Y; Fu Y; Wei T; Le Guyader L; Gao G; Liu RS; Chang YZ; Chen C
    Biomaterials; 2012 Jan; 33(2):402-11. PubMed ID: 22019121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery.
    Feng L; Yang X; Shi X; Tan X; Peng R; Wang J; Liu Z
    Small; 2013 Jun; 9(11):1989-97. PubMed ID: 23292791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1.
    Lammel T; Navas JM
    Aquat Toxicol; 2014 May; 150():55-65. PubMed ID: 24642293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance.
    Feng L; Li K; Shi X; Gao M; Liu J; Liu Z
    Adv Healthc Mater; 2014 Aug; 3(8):1261-71. PubMed ID: 24652715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.
    Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S
    ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene Glycol-Engrafted Graphene Oxide as Biocompatible Materials for Peptide Nucleic Acid Delivery into Cells.
    Baek A; Baek YM; Kim HM; Jun BH; Kim DE
    Bioconjug Chem; 2018 Feb; 29(2):528-537. PubMed ID: 29376329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages.
    Wang B; Su X; Liang J; Yang L; Hu Q; Shan X; Wan J; Hu Z
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():514-522. PubMed ID: 29853120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative in vitro study of single and four layer graphene oxide nanoflakes - Cytotoxicity and cellular uptake.
    Peruzynska M; Cendrowski K; Barylak M; Tkacz M; Piotrowska K; Kurzawski M; Mijowska E; Drozdzik M
    Toxicol In Vitro; 2017 Jun; 41():205-213. PubMed ID: 28323107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery.
    Wen H; Dong C; Dong H; Shen A; Xia W; Cai X; Song Y; Li X; Li Y; Shi D
    Small; 2012 Mar; 8(5):760-9. PubMed ID: 22228696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice.
    Yang K; Wan J; Zhang S; Zhang Y; Lee ST; Liu Z
    ACS Nano; 2011 Jan; 5(1):516-22. PubMed ID: 21162527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-responsive biodegradable PEGylated nanographene oxide for efficiently chemo-photothermal therapy: a comparative study with non-biodegradable PEGylated nanographene oxide.
    Xiong H; Guo Z; Zhang W; Zhong H; Liu S; Ji Y
    J Photochem Photobiol B; 2014 Sep; 138():191-201. PubMed ID: 24976623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent cell uptake of protein-coated graphene oxide nanosheets.
    Mu Q; Su G; Li L; Gilbertson BO; Yu LH; Zhang Q; Sun YP; Yan B
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2259-66. PubMed ID: 22409495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles.
    Wu W; Yan L; Chen S; Li Q; Gu Z; Xu H; Yin ZQ
    Nanotoxicology; 2018 Oct; 12(8):819-835. PubMed ID: 29888639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.