BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 25692385)

  • 1. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications.
    Yin PT; Shah S; Chhowalla M; Lee KB
    Chem Rev; 2015 Apr; 115(7):2483-531. PubMed ID: 25692385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging.
    Sreejith S; Ma X; Zhao Y
    J Am Chem Soc; 2012 Oct; 134(42):17346-9. PubMed ID: 22799451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-based hybrid materials and devices for biosensing.
    Artiles MS; Rout CS; Fisher TS
    Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1352-60. PubMed ID: 21867736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the synthesis and applications of graphene-polypeptide nanocomposites.
    Qian Y; Di S; Wang L; Li Z
    J Mater Chem B; 2021 Sep; 9(33):6521-6535. PubMed ID: 34318859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing.
    Yan L; Chang YN; Yin W; Liu X; Xiao D; Xing G; Zhao L; Gu Z; Zhao Y
    Phys Chem Chem Phys; 2014 Jan; 16(4):1576-82. PubMed ID: 24309538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live cell biosensing platforms using graphene-based hybrid nanomaterials.
    Kim TH; Lee D; Choi JW
    Biosens Bioelectron; 2017 Aug; 94():485-499. PubMed ID: 28342377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free polypeptide-based enzyme detection using a graphene-nanoparticle hybrid sensor.
    Myung S; Yin PT; Kim C; Park J; Solanki A; Reyes PI; Lu Y; Kim KS; Lee KB
    Adv Mater; 2012 Nov; 24(45):6081-7. PubMed ID: 22961629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery.
    Aliabadi M; Shagholani H; Yunessnia Lehi A
    Int J Biol Macromol; 2017 May; 98():287-291. PubMed ID: 28167110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms.
    Halder A; Zhang M; Chi Q
    Biosens Bioelectron; 2017 Jan; 87():764-771. PubMed ID: 27649333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated graphene/nanoparticle hybrids for biological and electronic applications.
    Nguyen KT; Zhao Y
    Nanoscale; 2014 Jun; 6(12):6245-66. PubMed ID: 24752364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene resist interlacing process for versatile fabrication of free-standing graphene.
    Kumar S; Rezvani E; Nicolosi V; Duesberg GS
    Nanotechnology; 2012 Apr; 23(14):145302. PubMed ID: 22433716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospects for graphene-nanoparticle-based hybrid sensors.
    Yin PT; Kim TH; Choi JW; Lee KB
    Phys Chem Chem Phys; 2013 Aug; 15(31):12785-99. PubMed ID: 23828095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis.
    Kumari D; Sheikh L; Bhattacharya S; Webster TJ; Nayar S
    Int J Nanomedicine; 2017; 12():3605-3616. PubMed ID: 28553102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endotoxin-Free Preparation of Graphene Oxide and Graphene-Based Materials for Biological Applications.
    Parviz D; Strano M
    Curr Protoc Chem Biol; 2018 Dec; 10(4):e51. PubMed ID: 30285316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers.
    Myung S; Solanki A; Kim C; Park J; Kim KS; Lee KB
    Adv Mater; 2011 May; 23(19):2221-5. PubMed ID: 21469221
    [No Abstract]   [Full Text] [Related]  

  • 16. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions.
    Li D; Liu J; Barrow CJ; Yang W
    Chem Commun (Camb); 2014 Aug; 50(60):8197-200. PubMed ID: 24927153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform.
    Liu C; Wang Z; Jia H; Li Z
    Chem Commun (Camb); 2011 Apr; 47(16):4661-3. PubMed ID: 21409284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of graphene oxide-based biocomposites through diimide-activated amidation.
    Shen J; Yan B; Shi M; Ma H; Li N; Ye M
    J Colloid Interface Sci; 2011 Apr; 356(2):543-9. PubMed ID: 21329939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns.
    Niaraki Asli AE; Guo J; Lai PL; Montazami R; Hashemi NN
    Biosensors (Basel); 2020 Jan; 10(1):. PubMed ID: 31963492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible graphene oxide-based glucose biosensors.
    Liu Y; Yu D; Zeng C; Miao Z; Dai L
    Langmuir; 2010 May; 26(9):6158-60. PubMed ID: 20349968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.