BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25692675)

  • 1. Patterns of leaf biochemical and structural properties of cerrado life forms: implications for remote sensing.
    Ball A; Sanchez-Azofeifa A; Portillo-Quintero C; Rivard B; Castro-Contreras S; Fernandes G
    PLoS One; 2015; 10(2):e0117659. PubMed ID: 25692675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling up semi-arid grassland biochemical content from the leaf to the canopy level: challenges and opportunities.
    He Y; Mui A
    Sensors (Basel); 2010; 10(12):11072-87. PubMed ID: 22163513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form.
    Rossatto DR; Franco AC
    Oecologia; 2017 Apr; 183(4):953-962. PubMed ID: 28124118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].
    Wu J; Chen TS; Pan LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1961-6. PubMed ID: 26717760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting community traits along an alpine grassland transect using field imaging spectroscopy.
    Zhang F; Wu W; Li L; Liu X; Zhou G; Xu Z
    J Integr Plant Biol; 2023 Dec; 65(12):2604-2618. PubMed ID: 37837189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.
    Chavana-Bryant C; Malhi Y; Wu J; Asner GP; Anastasiou A; Enquist BJ; Cosio Caravasi EG; Doughty CE; Saleska SR; Martin RE; Gerard FF
    New Phytol; 2017 May; 214(3):1049-1063. PubMed ID: 26877108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meaningful traits for grouping plant species across arid ecosystems.
    Bär Lamas MI; Carrera AL; Bertiller MB
    J Plant Res; 2016 May; 129(3):449-61. PubMed ID: 26897637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spectral changes of deforestation in the Brazilian tropical savanna.
    Trancoso R; Sano EE; Meneses PR
    Environ Monit Assess; 2015 Jan; 187(1):4145. PubMed ID: 25471621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poor relationships between NEON Airborne Observation Platform data and field-based vegetation traits at a mesic grassland.
    Pau S; Nippert JB; Slapikas R; Griffith D; Bachle S; Helliker BR; O'Connor RC; Riley WJ; Still CJ; Zaricor M
    Ecology; 2022 Feb; 103(2):e03590. PubMed ID: 34787909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem.
    Alvarez-Añorve MY; Quesada M; Sánchez-Azofeifa GA; Avila-Cabadilla LD; Gamon JA
    Am J Bot; 2012 May; 99(5):816-26. PubMed ID: 22523349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition.
    Asner GP; Martin RE
    Ecol Lett; 2012 Sep; 15(9):1001-7. PubMed ID: 22690783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level.
    Potůčková M; Červená L; Kupková L; Lhotáková Z; Lukeš P; Hanuš J; Novotný J; Albrechtová J
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment, phylogeny, and photosynthetic pathway as determinants of leaf traits in savanna and forest graminoid species in central Brazil.
    Amaral EJ; Franco AC; Rivera VL; Munhoz CBR
    Oecologia; 2021 Sep; 197(1):1-11. PubMed ID: 33885981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foliar optical traits capture physiological and phenological leaf plasticity in Tilia×euchlora in the urban environment.
    Chi D; Van Meerbeek K; Yu K; Degerickx J; Somers B
    Sci Total Environ; 2022 Jan; 805():150219. PubMed ID: 34536866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model.
    Yang J; Yang S; Zhang Y; Shi S; Du L
    Opt Express; 2021 Jan; 29(1):400-414. PubMed ID: 33362125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast detection of leaf pigments and isoprenoids for ecophysiological studies, plant phenotyping and validating remote-sensing of vegetation.
    Junker LV; Ensminger I
    Physiol Plant; 2016 Dec; 158(4):369-381. PubMed ID: 27616618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees.
    Chavana-Bryant C; Malhi Y; Anastasiou A; Enquist BJ; Cosio EG; Keenan TF; Gerard FF
    Sci Total Environ; 2019 May; 666():1301-1315. PubMed ID: 30970495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Temporal variation analysis for spectral reflectance of maize leaves using a fitting method].
    Qu Y; Liu SH; Li XW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):131-5. PubMed ID: 23586241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral remote sensing of plant pigments.
    Blackburn GA
    J Exp Bot; 2007; 58(4):855-67. PubMed ID: 16990372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hyperspectral inversion models on verticillium wilt severity of cotton leaf].
    Jing X; Huang WJ; Wang JH; Wang JD; Wang KR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3348-52. PubMed ID: 20210167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.