BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 25692826)

  • 1. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.
    Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries.
    Liu J; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Phys Chem Chem Phys; 2013 Dec; 15(48):20813-8. PubMed ID: 24202186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries.
    Wu F; Dong R; Bai Y; Li Y; Chen G; Wang Z; Wu C
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21335-21342. PubMed ID: 29862804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple preparation of carbon nanofibers with graphene layers perpendicular to the length direction and the excellent li-ion storage performance.
    Li T; Wei C; Wu YM; Han FD; Qi YX; Zhu HL; Lun N; Bai YJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5107-15. PubMed ID: 25706088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries.
    Nam DH; Kim TH; Hong KS; Kwon HS
    ACS Nano; 2014 Nov; 8(11):11824-35. PubMed ID: 25350724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.
    Ma F; Yuan A; Xu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18129-38. PubMed ID: 25247688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.
    Dirican M; Lu Y; Ge Y; Yildiz O; Zhang X
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18387-96. PubMed ID: 26252051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binder-Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries.
    Adams RA; Syu JM; Zhao Y; Lo CT; Varma A; Pol VG
    ACS Appl Mater Interfaces; 2017 May; 9(21):17872-17881. PubMed ID: 28485975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO
    Zhang Y; Li J; Li W; Kang D
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries.
    Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries.
    Zheng P; Liu T; Guo S
    Sci Rep; 2016 Oct; 6():35620. PubMed ID: 27752146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries.
    Xiong Y; Qian J; Cao Y; Ai X; Yang H
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16684-9. PubMed ID: 27311835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.
    Zhang H; Ming H; Zhang W; Cao G; Yang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Synthesis of Carbon Nanofibers Anchored with Zn(x)Co(3-x)O4 Nanocubes as Binder-Free Anode Materials for Lithium-Ion Batteries.
    Chen R; Hu Y; Shen Z; Chen Y; He X; Zhang X; Zhang Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2591-9. PubMed ID: 26761129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers.
    Liu M; Xie W; Gu L; Qin T; Hou X; He D
    Beilstein J Nanotechnol; 2016; 7():1289-1295. PubMed ID: 27826503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent.
    Luo W; Bommier C; Jian Z; Li X; Carter R; Vail S; Lu Y; Lee JJ; Ji X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2626-31. PubMed ID: 25562593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured Carbon/Antimony Composites as Anode Materials for Lithium-Ion Batteries with Long Life.
    Cheng Y; Yi Z; Wang C; Wang L; Wu Y; Wang L
    Chem Asian J; 2016 Aug; 11(15):2173-80. PubMed ID: 27310879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.