These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 25692963)
1. Structural basis of substrate specificity and regiochemistry in the MycF/TylF family of sugar O-methyltransferases. Bernard SM; Akey DL; Tripathi A; Park SR; Konwerski JR; Anzai Y; Li S; Kato F; Sherman DH; Smith JL ACS Chem Biol; 2015 May; 10(5):1340-51. PubMed ID: 25692963 [TBL] [Abstract][Full Text] [Related]
2. A new structural form in the SAM/metal-dependent o‑methyltransferase family: MycE from the mycinamicin biosynthetic pathway. Akey DL; Li S; Konwerski JR; Confer LA; Bernard SM; Anzai Y; Kato F; Sherman DH; Smith JL J Mol Biol; 2011 Oct; 413(2):438-50. PubMed ID: 21884704 [TBL] [Abstract][Full Text] [Related]
3. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Zubieta C; He XZ; Dixon RA; Noel JP Nat Struct Biol; 2001 Mar; 8(3):271-9. PubMed ID: 11224575 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Zubieta C; Ross JR; Koscheski P; Yang Y; Pichersky E; Noel JP Plant Cell; 2003 Aug; 15(8):1704-16. PubMed ID: 12897246 [TBL] [Abstract][Full Text] [Related]
6. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. Vévodová J; Graham RM; Raux E; Schubert HL; Roper DI; Brindley AA; Ian Scott A; Roessner CA; Stamford NP; Elizabeth Stroupe M; Getzoff ED; Warren MJ; Wilson KS J Mol Biol; 2004 Nov; 344(2):419-33. PubMed ID: 15522295 [TBL] [Abstract][Full Text] [Related]
7. Catalytic mechanism of guanidinoacetate methyltransferase: crystal structures of guanidinoacetate methyltransferase ternary complexes. Komoto J; Yamada T; Takata Y; Konishi K; Ogawa H; Gomi T; Fujioka M; Takusagawa F Biochemistry; 2004 Nov; 43(45):14385-94. PubMed ID: 15533043 [TBL] [Abstract][Full Text] [Related]
8. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. Li S; Tietz DR; Rutaganira FU; Kells PM; Anzai Y; Kato F; Pochapsky TC; Sherman DH; Podust LM J Biol Chem; 2012 Nov; 287(45):37880-90. PubMed ID: 22952225 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of NodS N-methyltransferase from Bradyrhizobium japonicum in ligand-free form and as SAH complex. Cakici O; Sikorski M; Stepkowski T; Bujacz G; Jaskolski M J Mol Biol; 2010 Dec; 404(5):874-89. PubMed ID: 20970431 [TBL] [Abstract][Full Text] [Related]
11. Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus. Oster LM; Lester DR; Terwisscha van Scheltinga A; Svenda M; van Lun M; Généreux C; Andersson I J Mol Biol; 2006 Apr; 358(2):546-58. PubMed ID: 16527306 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of MycE and MycF, two O-methyltransferases involved in the biosynthesis of mycinamicin macrolide antibiotics. Li S; Anzai Y; Kinoshita K; Kato F; Sherman DH Chembiochem; 2009 May; 10(8):1297-301. PubMed ID: 19415708 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111 [TBL] [Abstract][Full Text] [Related]
14. Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Wang J; Pichersky E Arch Biochem Biophys; 1999 Aug; 368(1):172-80. PubMed ID: 10415125 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional insights into O-methyltransferase from Bacillus cereus. Cho JH; Park Y; Ahn JH; Lim Y; Rhee S J Mol Biol; 2008 Oct; 382(4):987-97. PubMed ID: 18706426 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for substrate flexibility of the O-methyltransferase MpaG' involved in mycophenolic acid biosynthesis. You C; Pan Y; Liu R; Li S; Feng Y Protein Sci; 2024 Sep; 33(9):e5144. PubMed ID: 39150221 [TBL] [Abstract][Full Text] [Related]
17. Structure and mechanism of a nonhaem-iron SAM-dependent C-methyltransferase and its engineering to a hydratase and an O-methyltransferase. Zou XW; Liu YC; Hsu NS; Huang CJ; Lyu SY; Chan HC; Chang CY; Yeh HW; Lin KH; Wu CJ; Tsai MD; Li TL Acta Crystallogr D Biol Crystallogr; 2014 Jun; 70(Pt 6):1549-60. PubMed ID: 24914966 [TBL] [Abstract][Full Text] [Related]
18. Structure analysis of geranyl pyrophosphate methyltransferase and the proposed reaction mechanism of SAM-dependent C-methylation. Ariyawutthiphan O; Ose T; Minami A; Shinde S; Tsuda M; Gao YG; Yao M; Oikawa H; Tanaka I Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1558-69. PubMed ID: 23090405 [TBL] [Abstract][Full Text] [Related]
19. Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism. Wada K; Yamaguchi H; Harada J; Niimi K; Osumi S; Saga Y; Oh-Oka H; Tamiaki H; Fukuyama K J Mol Biol; 2006 Jul; 360(4):839-49. PubMed ID: 16797589 [TBL] [Abstract][Full Text] [Related]
20. Gene targeting for O-methyltransferase genes, mycE and mycF, on the chromosome of Micromonospora griseorubida producing mycinamicin with a disruption cassette containing the bacteriophage phi C31 attB attachment site. Tsukada S; Anzai Y; Li S; Kinoshita K; Sherman DH; Kato F FEMS Microbiol Lett; 2010 Mar; 304(2):148-56. PubMed ID: 20158522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]