These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25693033)

  • 21. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots.
    Han Y; Liu Y; Zhao H; Vomiero A; Li R
    J Mater Chem B; 2021 May; 9(20):4111-4119. PubMed ID: 34037068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-center co-doped and mixed ratiometric LuVO
    Kolesnikov IE; Afanaseva EV; Kurochkin MA; Vaishlia EI; Kolesnikov EY; Lähderanta E
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35008067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-emission fluorescent silicon nanoparticle-based nanothermometer for ratiometric detection of intracellular temperature in living cells.
    Wang J; Jiang A; Wang J; Song B; He Y
    Faraday Discuss; 2020 Jun; 222(0):122-134. PubMed ID: 32108211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly-sensitive Eu(3+) ratiometric thermometers based on excited state absorption with predictable calibration.
    Souza AS; Nunes LA; Silva IG; Oliveira FA; da Luz LL; Brito HF; Felinto MC; Ferreira RA; Júnior SA; Carlos LD; Malta OL
    Nanoscale; 2016 Mar; 8(9):5327-33. PubMed ID: 26883124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers.
    Balabhadra S; Debasu ML; Brites CD; Nunes LA; Malta OL; Rocha J; Bettinelli M; Carlos LD
    Nanoscale; 2015 Nov; 7(41):17261-7. PubMed ID: 26426085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Red-Emitting Carbon Nanodot-Based Wide-Range Responsive Nanothermometer for Intracellular Temperature Sensing.
    Xu Y; Yang Y; Lin S; Xiao L
    Anal Chem; 2020 Dec; 92(23):15632-15638. PubMed ID: 33170648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 k based on Er(3+) emission and blackbody radiation.
    Debasu ML; Ananias D; Pastoriza-Santos I; Liz-Marzán LM; Rocha J; Carlos LD
    Adv Mater; 2013 Sep; 25(35):4868-74. PubMed ID: 23696297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature sensing using fluorescent nanothermometers.
    Vetrone F; Naccache R; Zamarrón A; Juarranz de la Fuente A; Sanz-Rodríguez F; Martinez Maestro L; Martín Rodriguez E; Jaque D; García Solé J; Capobianco JA
    ACS Nano; 2010 Jun; 4(6):3254-8. PubMed ID: 20441184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro/Nanoscale Thermometry for Cellular Thermal Sensing.
    Bai T; Gu N
    Small; 2016 Sep; 12(34):4590-610. PubMed ID: 27172908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermometry considerations in localized hyperthermia.
    Cetas TC; Connor WG
    Med Phys; 1978; 5(2):79-91. PubMed ID: 683161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells.
    Takei Y; Arai S; Murata A; Takabayashi M; Oyama K; Ishiwata S; Takeoka S; Suzuki M
    ACS Nano; 2014 Jan; 8(1):198-206. PubMed ID: 24354266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence.
    Montgomery CP; Murray BS; New EJ; Pal R; Parker D
    Acc Chem Res; 2009 Jul; 42(7):925-37. PubMed ID: 19191558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters.
    Li Z; Lopez-Ortega A; Aranda-Ramos A; Tajada JL; Sort J; Nogues C; Vavassori P; Nogues J; Sepulveda B
    Small; 2018 Jun; 14(24):e1800868. PubMed ID: 29761629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleic acid based fluorescent nanothermometers.
    Ebrahimi S; Akhlaghi Y; Kompany-Zareh M; Rinnan A
    ACS Nano; 2014 Oct; 8(10):10372-82. PubMed ID: 25265370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-Dependent Accuracy of Nanoscale Thermometers.
    Alicki R; Leitner DM
    J Phys Chem B; 2015 Jul; 119(29):9000-5. PubMed ID: 25260146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles.
    Wilhelm C; Fortin JP; Gazeau F
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2933-7. PubMed ID: 17685322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle assemblies with molecular springs: a nanoscale thermometer.
    Lee J; Govorov AO; Kotov NA
    Angew Chem Int Ed Engl; 2005 Dec; 44(45):7439-42. PubMed ID: 16231378
    [No Abstract]   [Full Text] [Related]  

  • 39. Apparent self-heating of individual upconverting nanoparticle thermometers.
    Pickel AD; Teitelboim A; Chan EM; Borys NJ; Schuck PJ; Dames C
    Nat Commun; 2018 Nov; 9(1):4907. PubMed ID: 30464256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double-doped YVO
    Kolesnikov IE; Mamonova DV; Kurochkin MA; Medvedev VA; Bai G; Ivanova TY; Borisov EV; Kolesnikov EY
    Phys Chem Chem Phys; 2022 Jun; 24(25):15349-15356. PubMed ID: 35703368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.