These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25693406)

  • 41. Application of an acute biotic ligand model to predict chronic copper toxicity to Daphnia magna in natural waters of Chile and reconstituted synthetic waters.
    Villavicencio G; Urrestarazu P; Arbildua J; Rodriguez PH
    Environ Toxicol Chem; 2011 Oct; 30(10):2319-25. PubMed ID: 21796669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chromosome-level assembly of the Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae) genome provides insights into its ecological adaptation.
    Zhou Y; Qin W; Zhong H; Zhang H; Zhou L
    Genomics; 2021 Sep; 113(5):2944-2952. PubMed ID: 34153498
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptomic comparison of invasive bigheaded carps (
    Wang J; Lamer JT; Gaughan S; Wachholtz M; Wang C; Lu G
    Ecol Evol; 2016 Dec; 6(23):8452-8459. PubMed ID: 28031797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exposure to waterborne Cu inhibits cutaneous Na⁺ uptake in post-hatch larval rainbow trout (Oncorhynchus mykiss).
    Zimmer AM; Brauner CJ; Wood CM
    Aquat Toxicol; 2014 May; 150():151-8. PubMed ID: 24680751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach.
    Niyogi S; Kent R; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):305-14. PubMed ID: 18577468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection and characterization of potentially pathogenic Aeromonas sobria isolated from fish Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae).
    Dar GH; Dar SA; Kamili AN; Chishti MZ; Ahmad F
    Microb Pathog; 2016 Feb; 91():136-40. PubMed ID: 26518124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas.
    de Polo A; Scrimshaw MD
    Environ Toxicol Chem; 2012 Feb; 31(2):230-8. PubMed ID: 22105377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Site-specific water quality criteria for lethal/sublethal protection of freshwater fish exposed to zinc in southern Taiwan.
    Chen WY; Chen TY; Hsieh NH; Ju YT
    Chemosphere; 2016 Sep; 159():412-419. PubMed ID: 27337432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toxicity of copper to early-life stage Kootenai River white sturgeon, Columbia River white sturgeon, and rainbow trout.
    Little EE; Calfee RD; Linder G
    Arch Environ Contam Toxicol; 2012 Oct; 63(3):400-8. PubMed ID: 22890615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Pollution Characteristics and Ecological Risk Assessment of PAHs in Water and Fishes from Daqing Lakes].
    Wang XD; Zang SY; Zhang YH; Wang F; Yang X; Zuo YL
    Huan Jing Ke Xue; 2015 Nov; 36(11):4291-301. PubMed ID: 26911021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae).
    Wang N; Ingersoll CG; Hardesty DK; Ivey CD; Kunz JL; May TW; Dwyer FJ; Roberts AD; Augspurger T; Kane CM; Neves RJ; Barnhart MC
    Environ Toxicol Chem; 2007 Oct; 26(10):2036-47. PubMed ID: 17867873
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Salinity and dissolved organic carbon both affect copper toxicity in mussel larvae: Copper speciation or competition cannot explain everything.
    Deruytter D; Vandegehuchte MB; Garrevoet J; De Laender F; Vergucht E; Delbeke K; Blust R; De Schamphelaere KA; Vincze L; Janssen CR
    Environ Toxicol Chem; 2015 Jun; 34(6):1330-6. PubMed ID: 25865231
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting Copper Speciation in Estuarine Waters-Is Dissolved Organic Carbon a Good Proxy for the Presence of Organic Ligands?
    Pearson HB; Comber SD; Braungardt C; Worsfold PJ
    Environ Sci Technol; 2017 Feb; 51(4):2206-2216. PubMed ID: 28098987
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating copper toxicity in the tropical fish cardinal tetra (Paracheirodon axelrodi) in natural Amazonian waters: Measurements, modeling, and reality.
    Crémazy A; Wood CM; Smith DS; Ferreira MS; Johannsson OE; Giacomin M; Val AL
    Aquat Toxicol; 2016 Nov; 180():353-363. PubMed ID: 27969548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).
    Arnold WR; Diamond RL; Smith DS
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):225-34. PubMed ID: 20101399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biotic ligand model of the acute toxicity of metals. 1. Technical basis.
    Di Toro DM; Allen HE; Bergman HL; Meyer JS; Paquin PR; Santore RC
    Environ Toxicol Chem; 2001 Oct; 20(10):2383-96. PubMed ID: 11596774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison of complete mitochondrial genomes of silver carp Hypophthalmichthys molitrix and bighead carp Hypophthalmichthys nobilis: implications for their taxonomic relationship and phylogeny.
    Li SF; Xu JW; Yang QL; Wang CH; Chen Q; Chapman DC; Lu G
    J Fish Biol; 2009 May; 74(8):1787-803. PubMed ID: 20735671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensitivity and response time of three common Antarctic marine copepods to metal exposure.
    Zamora LM; King CK; Payne SJ; Virtue P
    Chemosphere; 2015 Feb; 120():267-72. PubMed ID: 25128632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.