These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25693502)

  • 1. Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces.
    Luo Y; Li J; Zhu J; Zhao Y; Gao X
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4876-9. PubMed ID: 25693502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condensate microdrop self-propelling aluminum surfaces based on controllable fabrication of alumina rod-capped nanopores.
    Zhao Y; Luo Y; Li J; Yin F; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11079-82. PubMed ID: 25981353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Fabrication of Anodic Alumina Rod-Capped Nanopore Films with Condensate Microdrop Self-Propelling Function.
    Li J; Zhang W; Luo Y; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18206-10. PubMed ID: 26270768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Role of Dynamic Wettability for Condensate Microdrop Self-Propelling Based on Designed Superhydrophobic TiO
    Zhang S; Huang J; Tang Y; Li S; Ge M; Chen Z; Zhang K; Lai Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27152963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible superhydrophobic surfaces with condensate microdrop self-propelling functionality based on carbon nanotube films.
    Gong X; Xu J; Yong Z; Ramakrishna S
    Nanoscale Adv; 2020 Sep; 2(9):4147-4152. PubMed ID: 36132777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Bionic Condensate Microdrop Self-Propelling Surfaces.
    Gong X; Gao X; Jiang L
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 28845888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of clustered rugged ZnO nanotube films with condensate microdrop self-propelling function.
    Chen Y; Jing Z
    Chem Commun (Camb); 2016 May; 52(45):7299-301. PubMed ID: 27181167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-Based Ultrathin Nickel Nanocone Films with High-Efficiency Dropwise Condensation Heat Transfer Performance.
    Zhao Y; Luo Y; Zhu J; Li J; Gao X
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11719-23. PubMed ID: 26011021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcooled-Water Nonstickiness of Condensate Microdrop Self-Propelling Nanosurfaces.
    Li J; Luo Y; Zhu J; Li H; Gao X
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26391-5. PubMed ID: 26584134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing.
    Cui J; Luo J; Peng B; Zhang X; Zhang Y; Wang Y; Qin Y; Zheng H; Shu X; Wu Y
    Nanoscale; 2016 Jan; 8(2):770-4. PubMed ID: 26662505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdrop-Assisted Microdomain Hydrophilicization of Superhydrophobic Surfaces for High-Efficiency Nucleation and Self-Removal of Condensate Microdrops.
    Xing D; Wu F; Wang R; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7553-7558. PubMed ID: 30667209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous cuprite films: facile solution deposition and their application for nitrite sensing.
    Wang N; Cao X; Cai X; Xu Y; Guo L
    Analyst; 2010 Aug; 135(8):2106-10. PubMed ID: 20532351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.
    Zhang QB; Abbott AP; Yang C
    Phys Chem Chem Phys; 2015 Jun; 17(22):14702-9. PubMed ID: 25972227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.
    Nagarale RK; Hoss U; Heller A
    J Am Chem Soc; 2012 Dec; 134(51):20783-7. PubMed ID: 23171288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Self-Propelling of Small-Scale Condensed Microdrops by Closely Packed ZnO Nanoneedles.
    Tian J; Zhu J; Guo HY; Li J; Feng XQ; Gao X
    J Phys Chem Lett; 2014 Jun; 5(12):2084-8. PubMed ID: 26270496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance.
    Zhu J; Luo Y; Tian J; Li J; Gao X
    ACS Appl Mater Interfaces; 2015 May; 7(20):10660-5. PubMed ID: 25966966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers.
    Yoon K; Yang Y; Lu P; Wan D; Peng HC; Stamm Masias K; Fanson PT; Campbell CT; Xia Y
    Angew Chem Int Ed Engl; 2012 Sep; 51(38):9543-6. PubMed ID: 22930556
    [No Abstract]   [Full Text] [Related]  

  • 19. Low-current field-assisted assembly of copper nanoparticles for current collectors.
    Liu L; Choi BG; Tung SO; Hu T; Liu Y; Li T; Zhao T; Kotov NA
    Faraday Discuss; 2015; 181():383-401. PubMed ID: 25996240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films.
    Luechinger NA; Loher S; Athanassiou EK; Grass RN; Stark WJ
    Langmuir; 2007 Mar; 23(6):3473-7. PubMed ID: 17279782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.