BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25693508)

  • 1. "Missing perikymata"--fact or fiction? A study on chimpanzee (Pan troglodytes verus) canines.
    Kierdorf H; Witzel C; Kierdorf U; Skinner MM; Skinner MF
    Am J Phys Anthropol; 2015 Jun; 157(2):276-83. PubMed ID: 25693508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of periodicity of repetitive linear enamel hypoplasia from perikymata counts on imbricational enamel among dry-adapted chimpanzees (Pan troglodytes verus) from Fongoli, Senegal.
    Skinner MF; Pruetz JD
    Am J Phys Anthropol; 2012 Nov; 149(3):468-82. PubMed ID: 23041791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating striae of Retzius periodicity nondestructively using partial counts of perikymata.
    McFarlane G; Littleton J; Floyd B
    Am J Phys Anthropol; 2014 Jun; 154(2):251-8. PubMed ID: 24578262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying standard perikymata profiles to Pongo pygmaeus canines to estimate perikymata counts between linear enamel hypoplasias.
    O'Hara M
    Am J Phys Anthropol; 2017 May; 163(1):213-222. PubMed ID: 28211566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enamel hypoplasia in deciduous teeth of great apes: do differences in defect prevalence imply differential levels of physiological stress?
    Lukacs JR
    Am J Phys Anthropol; 1999 Nov; 110(3):351-63. PubMed ID: 10516566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental defects of the dental crown in chimpanzees from the Taï National Park, Côte D'Ivoire: coronal waisting.
    Skinner MF; Skinner MM; Boesch C
    Am J Phys Anthropol; 2012 Oct; 149(2):272-82. PubMed ID: 22890693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faster growth corresponds with shallower linear hypoplastic defects in great ape canines.
    McGrath K; Reid DJ; Guatelli-Steinberg D; Arbenz-Smith K; El Zaatari S; Fatica LM; Kralick AE; Cranfield MR; Stoinski TS; Bromage TG; Mudakikwa A; McFarlin SC
    J Hum Evol; 2019 Dec; 137():102691. PubMed ID: 31704354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological variations of enamel prisms within abnormal striae of Retzius.
    Rose JC
    Hum Biol; 1979 May; 51(2):139-51. PubMed ID: 457084
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis and significance of linear enamel hypoplasia in Plio-Pleistocene hominins.
    Guatelli-Steinberg D
    Am J Phys Anthropol; 2004 Mar; 123(3):199-215. PubMed ID: 14968419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life history, enamel formation, and linear enamel hypoplasia in the Ceboidea.
    Newell EA; Guatelli-Steinberg D; Field M; Cooke C; Feeney RN
    Am J Phys Anthropol; 2006 Oct; 131(2):252-60. PubMed ID: 16596595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enamel hypoplasia in the deciduous teeth of great apes: variation in prevalence and timing of defects.
    Lukacs JR
    Am J Phys Anthropol; 2001 Nov; 116(3):199-208. PubMed ID: 11595999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized hypoplasia of the primary canine in bonobos, orangutans, and gibbons.
    Skinner MF; Newell EA
    Am J Phys Anthropol; 2003 Jan; 120(1):61-72. PubMed ID: 12489137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation.
    Reid DJ; Ferrell RJ
    J Hum Evol; 2006 Feb; 50(2):195-202. PubMed ID: 16263151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear enamel hypoplasia as an indicator of physiological stress in great apes: reviewing the evidence in light of enamel growth variation.
    Guatelli-Steinberg D; Ferrell RJ; Spence J
    Am J Phys Anthropol; 2012 Jun; 148(2):191-204. PubMed ID: 22610895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic and microscopic analyses of linear enamel hypoplasia in Plio-Pleistocene South African hominins with respect to aspects of enamel development and morphology.
    Guatelli-Steinberg D
    Am J Phys Anthropol; 2003 Apr; 120(4):309-22. PubMed ID: 12627527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effectiveness of using carbonate isotope measurements of body tissues to infer diet in human evolution: Evidence from wild western chimpanzees (Pan troglodytes verus).
    Fahy GE; Boesch C; Hublin JJ; Richards MP
    J Hum Evol; 2015 Nov; 88():70-78. PubMed ID: 26553819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations on stria morphology in the lateral enamel of Pongo, Hylobates and Proconsul teeth.
    Dean MC; Shellis RP
    J Hum Evol; 1998; 35(4-5):401-10. PubMed ID: 9774502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conventional microscopy makes perikymata count and spacing data feasible for large samples.
    Edgar HJH; Moes E; Willermet C; S Ragsdale C
    Am J Phys Anthropol; 2021 Oct; 176(2):321-331. PubMed ID: 34272873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disturbed enamel formation in wild boars (Sus scrofa L.) from fluoride polluted areas in Central Europe.
    Kierdorf H; Kierdorf U; Richards A; Sedlacek F
    Anat Rec; 2000 May; 259(1):12-24. PubMed ID: 10760739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoplastic enamel defects and environmental stress in a homogeneous Romano-British population.
    Brook AH; Smith JM
    Eur J Oral Sci; 2006 May; 114 Suppl 1():370-4; discussion 375-6, 382-3. PubMed ID: 16674715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.