BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 25693513)

  • 1. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.
    Chae MH; Krull F; Knapp EW
    Proteins; 2015 May; 83(5):881-90. PubMed ID: 25693513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state.
    Zhang C; Liu S; Zhou H; Zhou Y
    Protein Sci; 2004 Feb; 13(2):400-11. PubMed ID: 14739325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
    Liu S; Zhang C; Zhou H; Zhou Y
    Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting protein complex geometries with a neural network.
    Chae MH; Krull F; Lorenzen S; Knapp EW
    Proteins; 2010 Mar; 78(4):1026-39. PubMed ID: 19938153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing physical energy functions for protein folding.
    Fujitsuka Y; Takada S; Luthey-Schulten ZA; Wolynes PG
    Proteins; 2004 Jan; 54(1):88-103. PubMed ID: 14705026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein refolding in silico with atom-based statistical potentials and conformational search using a simple genetic algorithm.
    Fang Q; Shortle D
    J Mol Biol; 2006 Jun; 359(5):1456-67. PubMed ID: 16678202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model.
    Felts AK; Gallicchio E; Wallqvist A; Levy RM
    Proteins; 2002 Aug; 48(2):404-22. PubMed ID: 12112706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance dependent centroid to centroid force fields using high resolution decoys.
    Rajgaria R; McAllister SR; Floudas CA
    Proteins; 2008 Feb; 70(3):950-70. PubMed ID: 17847088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. sDFIRE: Sequence-specific statistical energy function for protein structure prediction by decoy selections.
    Hoque MT; Yang Y; Mishra A; Zhou Y
    J Comput Chem; 2016 May; 37(12):1119-24. PubMed ID: 26849026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein structure evaluation using an all-atom energy based empirical scoring function.
    Narang P; Bhushan K; Bose S; Jayaram B
    J Biomol Struct Dyn; 2006 Feb; 23(4):385-406. PubMed ID: 16363875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structure prediction by all-atom free-energy refinement.
    Verma A; Wenzel W
    BMC Struct Biol; 2007 Mar; 7():12. PubMed ID: 17371594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A consistent set of statistical potentials for quantifying local side-chain and backbone interactions.
    Fang Q; Shortle D
    Proteins; 2005 Jul; 60(1):90-6. PubMed ID: 15852305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network properties of protein-decoy structures.
    Chatterjee S; Bhattacharyya M; Vishveshwara S
    J Biomol Struct Dyn; 2012; 29(6):606-22. PubMed ID: 22545992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic potential of mean force as a solvation function for protein structure prediction.
    Lin MS; Fawzi NL; Head-Gordon T
    Structure; 2007 Jun; 15(6):727-40. PubMed ID: 17562319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel nonlinear knowledge-based mean force potentials based on machine learning.
    Dong Q; Zhou S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):476-86. PubMed ID: 20820079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coarse-grained protein force field for folding and structure prediction.
    Maupetit J; Tuffery P; Derreumaux P
    Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations.
    Huang ES; Subbiah S; Tsai J; Levitt M
    J Mol Biol; 1996 Apr; 257(3):716-25. PubMed ID: 8648635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.