BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25693739)

  • 1. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats.
    Seebach C; Henrich D; Schaible A; Relja B; Jugold M; Bönig H; Marzi I
    Tissue Eng Part A; 2015 May; 21(9-10):1565-78. PubMed ID: 25693739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous cultivation of human endothelial-like differentiated precursor cells and human marrow stromal cells on beta-tricalcium phosphate.
    Henrich D; Seebach C; Kaehling C; Scherzed A; Wilhelm K; Tewksbury R; Powerski M; Marzi I
    Tissue Eng Part C Methods; 2009 Dec; 15(4):551-60. PubMed ID: 19199563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats.
    Seebach C; Henrich D; Wilhelm K; Barker JH; Marzi I
    Cell Transplant; 2012; 21(8):1667-77. PubMed ID: 22507568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three different types of scaffolds preseeded with human bone marrow mononuclear cells on the bone healing in a femoral critical size defect model of the athymic rat.
    Janko M; Sahm J; Schaible A; Brune JC; Bellen M; Schroder K; Seebach C; Marzi I; Henrich D
    J Tissue Eng Regen Med; 2018 Mar; 12(3):653-666. PubMed ID: 28548246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the effective dose of bone marrow mononuclear cell therapy for bone healing in vivo.
    Janko M; Pöllinger S; Schaible A; Bellen M; Schröder K; Heilani M; Fremdling C; Marzi I; Nau C; Henrich D; Verboket RD
    Eur J Trauma Emerg Surg; 2020 Apr; 46(2):265-276. PubMed ID: 32112259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids.
    Suenaga H; Furukawa KS; Suzuki Y; Takato T; Ushida T
    J Mater Sci Mater Med; 2015 Nov; 26(11):254. PubMed ID: 26449444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue.
    Peterson B; Zhang J; Iglesias R; Kabo M; Hedrick M; Benhaim P; Lieberman JR
    Tissue Eng; 2005; 11(1-2):120-9. PubMed ID: 15738667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population.
    Henrich D; Seebach C; Verboket R; Schaible A; Marzi I; Bonig H
    Eur Cell Mater; 2018 Mar; 35():165-177. PubMed ID: 29509226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of Large Bone Defects with a Vascularized Periosteal Flap in Combination with Biodegradable Scaffold Seeded with Bone Marrow-Derived Mononuclear Cells: An Experimental Study in Rats.
    Nau C; Henrich D; Seebach C; Schröder K; Fitzsimmons SJ; Hankel S; Barker JH; Marzi I; Frank J
    Tissue Eng Part A; 2016 Jan; 22(1-2):133-41. PubMed ID: 26486307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells.
    Dong Y; Chen X; Hong Y
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation.
    Jäger M; Degistirici O; Knipper A; Fischer J; Sager M; Krauspe R
    J Bone Miner Res; 2007 Aug; 22(8):1224-33. PubMed ID: 17451370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model.
    Liang Y; Wen L; Shang F; Wu J; Sui K; Ding Y
    Arch Oral Biol; 2016 Aug; 68():123-30. PubMed ID: 27131592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells.
    Deng Y; Zhou H; Gu P; Fan X
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):6016-23. PubMed ID: 25168901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Bone Healing by Neutralization of microRNA-335-5p, but not by Neutralization of microRNA-92A in Bone Marrow Mononuclear Cells Transplanted into a Large Femur Defect of the Rat.
    Janko M; Dietz K; Rachor J; Sahm J; Schroder K; Schaible A; Nau C; Seebach C; Marzi I; Henrich D
    Tissue Eng Part A; 2019 Jan; 25(1-2):55-68. PubMed ID: 29652605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP-silk composite matrices heal critically sized femoral defects.
    Kirker-Head C; Karageorgiou V; Hofmann S; Fajardo R; Betz O; Merkle HP; Hilbe M; von Rechenberg B; McCool J; Abrahamsen L; Nazarian A; Cory E; Curtis M; Kaplan D; Meinel L
    Bone; 2007 Aug; 41(2):247-55. PubMed ID: 17553763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The early phase influence of bone marrow concentrate on metaphyseal bone healing.
    Jungbluth P; Hakimi AR; Grassmann JP; Schneppendahl J; Betsch M; Kröpil P; Thelen S; Sager M; Herten M; Wild M; Windolf J; Hakimi M
    Injury; 2013 Oct; 44(10):1285-94. PubMed ID: 23684350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside.
    Cuomo AV; Virk M; Petrigliano F; Morgan EF; Lieberman JR
    J Bone Joint Surg Am; 2009 May; 91(5):1073-83. PubMed ID: 19411455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis.
    Li R; Atesok K; Nauth A; Wright D; Qamirani E; Whyne CM; Schemitsch EH
    J Orthop Trauma; 2011 Aug; 25(8):467-71. PubMed ID: 21738071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and feasibility of cell-based therapy of autologous bone marrow-derived mononuclear cells in plate-stabilized proximal humeral fractures in humans.
    Seebach C; Henrich D; Meier S; Nau C; Bonig H; Marzi I
    J Transl Med; 2016 Nov; 14(1):314. PubMed ID: 27846890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold.
    Harada N; Watanabe Y; Sato K; Abe S; Yamanaka K; Sakai Y; Kaneko T; Matsushita T
    Biomaterials; 2014 Sep; 35(27):7800-10. PubMed ID: 24952976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.